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1. INTRODUCTION

1.1. Light and Electron Microscopy and Their Impact in
Biology

To fully understand biological processes from the metabolism
of a bacterium to the operation of a human brain, it is necessary to
know the three-dimensional (3D) spatial arrangement and
dynamics of the constituent molecules, how they assemble into
complex molecular machines, and how they form functional
organelles, cells, and tissues. The methods of X-ray crystal-
lography and NMR spectroscopy can provide detailed informa-
tion on molecular structure and dynamics. At the cellular level,
optical microscopy reveals the spatial distribution and dynamics
of molecules tagged with fluorophores. Electron microscopy
(EM) overlaps with these approaches, covering a broad range
from atomic to cellular structures. The development of cryogenic
methods has enabled EM imaging to provide snapshots of
biological molecules and cells trapped in a close to native,
hydrated state.1,2

Because of the importance of macromolecular assemblies in
the machinery of living cells and progress in the EM and image
processing methods, EM has become a major tool for structural
biology over themolecular to cellular size range. There have been
tremendous advances in understanding the 3D spatial organiza-
tion of macromolecules and their assemblies in cells and tissues,
due to developments in both optical and electron microscopy. In
light microscopy, super-resolution and single molecule methods
have pushed the resolution of fluorescence images to ∼50 nm,
using the power of molecular biology to fuse molecules of
interest with fluorescent marker proteins.3 X-ray cryo-tomogra-
phy is developing as a method for 3D reconstruction of thicker
(10 μm) hydrated samples, with resolution reaching the 15 nm
resolution range.4 In EM, major developments in instrumenta-
tion and methods have advanced the study of single particles
(isolated macromolecular complexes) in vitrified solution as well
as in 3D reconstruction by tomography of irregular objects such
as cells or subcellular structures.1,5�7 Cryo-sectioning can be
used to prepare vitrified sections of cells and tissues that would
otherwise be too thick to image by transmission EM (TEM).8,9

In parallel, software improvements have facilitated 3D struc-
ture determination from the low contrast, low signal-to-noise
ratio (SNR) images of projected densities provided by TEM of
biological molecules.10�14 Alignment and classification of images
in both 2D and 3D are key methods for improving SNR and
detection and sorting of heterogeneity in EM data sets.14 The
resolution of single-particle reconstructions is steadily improving
and has gone beyond 4 Å for some icosahedral viruses and 5.5 Å
for asymmetric complexes such as ribosomes, giving a clear view
of protein secondary structure elements and, in the best cases,
resolving the protein or nucleic acid fold.15,16

1.2. EM of Macromolecular Assemblies, Isolated and in Situ
A variety of molecular assemblies of different shapes, sizes, and

biochemical states can be studied by TEM, provided the sample

thickness is well below 1000 nm. There is a range of sample types
typified by two extreme cases: biochemically purified, isolated
complexes (single particles or ordered assemblies such as 2D
crystals) and unique, individual objects such as tissue sections,
cells, or organelles. From preparations of isolated complexes with
many identical single particles present on an EM grid, many
views of the same molecule can be obtained, so that their 3D
structure can be calculated. Near-atomic resolution maps were
first obtained from samples in ordered arrays such as 2D crystals
and helices.17,18 Membrane proteins can be induced to form 2D
crystals in lipid bilayers, although examples of highly ordered
crystals leading to high-resolution 3D structures are still rare. If
membrane-bound complexes are large enough, they can also be
prepared as single particles using detergents or in liposomes. In
general, the single-particle approach is widely applicable and has
caught up with the crystallographic one. This approach is
applicable to homogeneous preparations of single particles with
any symmetry and molecular masses in the range of 0.5�
100 MDa (e.g., viruses, ribosomes) and can reveal fine details
of the 3D structure.15 The study of single particles by cryo-EM in
the 0.1�0.5 MDa size range still needs great care to avoid
producing false but self-consistent density maps. In addition,
the single-particle approach can be used to correct for local
disorder in ordered arrays, improving the yield of structural
information. Regarding the quality of this structural information,
the resolution of cryo-EM is steadily improving, and comparisons
of cryo-EM results with X-ray crystallography or NMR of the
same molecules indicate that cryo-EM often provides faithful
snapshots of the native structure in solution. A detailed
account of the basic principles of imaging and diffraction
can be found in ref 19.

For cells, organelles, and tissue sections, electron tomography
provides a wealth of 3D information, and methods for harvesting
this information are in an active state of development. Auto-
mated tomographic data collection is well established onmodern
microscopes. A major factor limiting resolution in cryo-electron
tomography is radiation damage of the specimen by the electron
beam during acquisition of a tilt series. At the forefront of this
field are efforts to optimize contrast at low electron dose, in order
to locate and characterize macromolecular complexes within
tomograms of cells and tissues. At present, complexes must be
well over 1 MDa to be clearly identifiable in an EM tomographic
reconstruction. Examples of important biological structures char-
acterized by electron tomography include the nuclear pore
complex20 and the flagellar axoneme.21 For thicker, cellular
samples, X-ray microscopy (tomography) provides information
in the 15�100 nm resolution range, bridging EM tomography
and fluorescence methods.

The above developments have led to a flourishing field enabling
multiscale imaging to link atomic structure to cellular function
and dynamics. In this Review, we aim to cover the theoretical
background and technical advances in instrumentation, software,
and experimental methods underlying the major developments
in 3D structure determination of macromolecular assemblies by
EM and to review the current state of the art in the field.

2. EM IMAGING

2.1. Sample Preparation
Electron imaging is a powerful technique for visualizing 3D

structural details. However, because electrons interact strongly
with matter, the electron path of the microscope must be kept
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under high vacuum to avoid unwanted scattering by gas mole-
cules in the electron path. Consequently, the EM specimen
must be in the solid state for imaging, and special preparation
techniques are necessary to either dehydrate or stabilize hydrated
biological samples under vacuum.22

2.1.1. Negative Staining of Isolated Assemblies. The
simplest method for examining a solution or suspension of
isolated particles such as viruses or other macromolecules is
negative staining, in which a droplet of the suspension is spread
on an EM support film and then embedded in a heavy metal salt
solution, typically uranyl acetate, blotted to a thin film and
allowed to dry23,24 (Figure 1a). Although uranyl acetate is the
most widely used stain and gives the highest contrast, some
structures are better preserved in other stains such as tungsten or
molybdenum salts.25,26 The heavy metal stain is deposited as a
dense coat outlining the surfaces of the biological assembly,
giving information about the size, shape, and symmetry of
the particle, as well as an overview of the homogeneity of the
preparation. The method is called negative staining because the
macromolecular shape is seen by exclusion rather than binding of

stain. The method is quick and simple, although not foolproof.
Some molecules are well preserved in negative stain, but fragile
assemblies can collapse or disintegrate during staining and
drying. In general, the 3D structure becomes flattened to a
greater or lesser degree, and the stain may not cover the entire
molecule, so that parts of the structure may be distorted or absent
from the image data. Therefore, it is normally preferable to use
cryo-methods for 3D structure determination. The exception is
for small structures, below ∼100�200 kDa, for which the signal
in cryo-EM may be too weak for accurate detection and orienta-
tion determination. For such structures, 3D reconstruction is
done from negative stain images and can provide much useful
information.
2.1.2. Cryo EM of Isolated and Subcellular Assemblies.

Macromolecules and cells are normally in aqueous solution, and
hydration is necessary for their structural integrity. Cryo EM
makes it possible to stabilize samples in the native, hydrated state,
even under high vacuum. The main technical effort of cryo EM is
to keep the specimen cold and free of surface contamination in an
otherwise warm microscope while retaining mechanical and

Figure 1. Negative stain and cryo EM sample preparation. (a) Schematic view of sample deposition, staining, and drying, with an example negative stain
image. (b) Schematic of plunge freezing and of a vitrified layer, and an example cryo EM image. Panel (b) is adapted with permission from ref 24.
Copyright 2000 International Union of Crystallography.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-000.jpg&w=360&h=395
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thermal stability. Rapid freezing is used to bring the sample to the
solid state without dehydration or ice crystallization, and the
sample is maintained at low temperature during transfer and
observation in the EM. The method widely used for freezing
aqueous solutions is to blot them to a thin layer and immediately
plunge into liquid ethane or propane (�182 �C) cooled by liquid
nitrogen for rapid heat transfer from the specimen1,27 (Figure 1b24).
Cooling by plunging into liquid ethane is much faster than
plunging directly into liquid nitrogen because liquid ethane is
used near to its freezing point rather than at its boiling point, so it
does not evaporate and produce an insulating gas layer. Rapid
cooling traps the biological molecules in their native, hydrated
state embedded in glass-like, solid water, vitrified ice, and prevents
the formation of ice crystals, which would be very damaging to
the specimen. There are two tremendous advantages of cryo EM:
the sample, which is kept around �170 �C, near liquid nitrogen
temperature (�196 �C), is trapped in a native-like, hydrated
state in the high vacuum of the microscope column, and the low
temperature greatly slows the effects of electron beam damage.
An important consideration in cryo EM sample preparation is

the type of support film. Some samples adhere to the carbon
support film, but continuous carbon films contribute additional
background scattering and reduce the image contrast. Therefore,
perforated films are often used, in which the sample is imaged in
regions of ice suspended over holes in the support film. Home-
made holey films provide a random distribution of holes.
Nanofabricated grids (e.g., Quantifoil grids, Quantifoil Micro
Tools GmbH; C-flat grids, Protochips, Inc.) with regularly
arranged holes are used for automated and manual data collec-
tion. A significantly higher sample concentration is usually
needed for good particle distribution in holes. The ice thickness
is extremely critical for achieving good contrast while preserving
the integrity of the structure. It takes some experience to adjust
the blotting so that the ice is an optimal thickness for each
sample. The general rule is to have the ice as thin as possible
without squashing the molecules of interest.
In addition to thermal stability, a major issue is sample

conductance; ice unsupported by carbon film is an insulator,
and charging effects caused by the electron beam can seriously
degrade the image, especially at high tilt. This problem is lessened
by including an adjacent carbon layer in the illuminated area.
New support materials with higher conductivity than carbon are
being investigated.28,29

The single-particle approach can be applied to preparations of
isolated objects such as particles in aqueous solution or mem-
brane complexes in detergent solution. EM is experimentally
more difficult in detergent, which may give extra background and
change the properties of the ice. Membrane complexes can also
be imaged in lipid vesicles,30,31 in a variant of single-particle
analysis in which the particle images are excised from larger
assemblies.
There is a lower size limit for single-particle analysis, because

the object must generate enough contrast to be detected and
for its orientation to be determined. Single-particle cryo-EM
becomes very difficult when the particle is less than a few
hundred kDa inmass. The size limit is affected by the shape of the
particle; an extended structure with distinct projections in
different directions will be much easier to align than a compact
spherical particle of similar mass. For small particles, negative
stain EM is used. A hybrid approach to sample preparation, cryo-
negative staining, has been developed.22,32,33 The sample is
embedded in stain solution and then vitrified, after partial drying.

This method allows smaller complexes to be studied by cryo EM,
but has the disadvantage that the sample is in a high concentra-
tion of heavy metal salt, far from physiological conditions.
2.1.3. Stabilization of Dynamic Assemblies.Asmolecular

biology moves toward studies of more complex systems, the
focus of interest has moved toward more biochemically hetero-
geneous samples. Although there are computational methods for
sorting particles with structural variations (section 9), the success
of the experiment depends critically on the quality of the bio-
chemical preparation. One approach for dealing with unstable,
heterogeneous assemblies is to use protein cross-linkers such as
glutaraldehyde to stabilize complexes during density gradient
separation, a procedure termed GraFix.22,34 Promising results
have been obtained with very difficult samples such as complexes
in RNA editing,35 but it should be noted that cross-linkers may
also introduce artifacts in flexible assemblies.
2.1.4. EM Preparation of Cells and Tissues. 2.1.4.1. High

Pressure Freezing. Most cellular structures are too thick for
TEM imaging, and samples are prepared as thin sections. Standard
chemical fixation has provided the classical view of cell structure,
in which the sample is cross-linked with fixatives and then
dehydrated and embedded in plastic resin so that it can be
readily sectioned for EM examination. Plastic-embedded sec-
tions are contrasted with heavy metal staining. Although this
treatment can lead to extensive rearrangement and extraction of
cell and tissue contents, the great majority of cell structure
information at the EM level has been derived from such material.
High-pressure freezing has made it possible to avoid chemical

fixation so that cell and tissue sections can be imaged in the
vitreous state.36�38 To vitrify specimens thicker than a few
micrometers, it is necessary to do the rapid freezing at high
pressures, around 2000 bar, because the freezing rate in thicker
samples at ambient pressure is not high enough to prevent ice
crystal growth. Instruments for high-pressure freezing (HPF)36

were first developed in the 1960s and are widely used in cell
preparation, in combination with freeze-substitution (see section
2.1.4.2). The specimen is introduced into a pressure chamber at
room temperature and rapidly pressurized, with cooling provided
by liquid N2 flow through the metal sample holder. Samples such
as yeast or bacterial cells in 100�200 μm thick pellets or pastes
can readily be vitrified by HPF. Samples with higher water
content, such as embryonic or brain tissue, are more difficult to
vitrify in this manner, because water is a poor thermal conductor,
and thinner tissue slices (e100 μm) must be used. For the same
reason, aqueous media surrounding the sample must be supple-
mented by antifreeze agents such as 1-hexadecene39 or 20%
dextran before vitrification by HPF.40

2.1.4.2. Freeze-Substitution. Freeze-substitution (FS) elim-
inates some of the artifacts of chemical fixation and dehydration
and provides greatly improved structural preservation, while
retaining the ease of working with plastic sections and room
temperature microscopy.41 The sample is initially vitrified as for
cryo-sectioning, but then gradually warmed for substitution of
the water with acetone, followed by staining and resin embedding
at�90 to�50 �C (see, for example, ref 42). Some resins can be
polymerized by UV illumination at low temperature, so that all
processing is completed at low temperature. With this treat-
ment, cytoplasmic contents such as ribosomes are retained
and rearrangement of cell structures is reduced36 (Figure 2a).
However, small ice crystals form during FS processing, and
staining is not uniform, so that the results are not reliable on
the molecular scale.
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Importantly, antigenicity is often conserved in FS material, so
that immunolabeling or other chemical labeling can be done on
the sections.36 This is a major advantage over vitreous sectioning,
for which antibody labeling is impossible. FS is an important
adjunct to cryo-sectioning for tomography of cell structures,
because large volumes are far more readily imaged and structures
of interest tracked in the 200�300 nm thick sections that can be
examined with FS. In addition, the fluorescence of GFP is
retained in the freeze-substituted sections, facilitating correlative
fluorescence/EM.43 A chemical reaction of the GFP chromo-
phore with diaminobenzidine produces an electron dense pro-
duct, allowing GFP tags to be precisely localized in EM sections.44

Therefore, the combination of cryo-sectioning and freeze-sub-
stitution on the same sample can provide an overview of the 3D
structure, chemical labeling, and detailed structural information
on regions of interest.
2.1.4.3. Cryo-Sectioning of Frozen-Hydrated Specimens.

Sectioning removes the restriction of cryo EM to examination
of only the thinnest bacterial cells or cell extensions. After a long
period of development, vitreous sectioning has started to become
generally accessible.8,9 The vitrified block is sectioned at�140 to
�160 �C with a diamond knife. Compression of the sections
along the cutting direction and crevasses on the surface of thicker
sections present mechanical artifacts. Nevertheless, HPF and
cryo-sectioning currently provide the best view into the native
structures of cells and tissues (Figure 2b). Because the native
structures are preserved, macromolecular structures can be
imaged in vitrified sections. Therefore, cryo-ET is an important
step toward the ultimate goal of understanding the atomic
structure of the cell.45

Cryo-sections must be around 50�150 nm thick, to find the
best compromise between formation of crevasses (thicker) and
section compression (thinner). Because of the low contrast and
the tiny fraction of cell volume sampled in such thin sections, it
can be very hard to locate the object of interest, unless the
structure is large and very abundant, or associated with large-
scale landmarks, such as membranes or large organelles. For this
reason, and also for biochemical identification, a very important
recent development is correlative cryo-fluorescence and EM.46

Cryo stages are being developed for fluorescence microscopes,
and if the signal is strong, the fluorescence can be first mapped

out on the cryo section or cell culture on an indexed (“finder”)
grid, and then the same grid can be examined by cryo EM.
2.1.4.4. Focused Ion Beam Milling. An alternative to cryo-

sectioning currently being explored is focused ion beam milling,
in which material is removed from the surface of a frozen
specimen by irradiation with a beam of gallium ions, until the
sample is thin enough for TEM.47,48 Milling is done under visual
control in a cryo-scanning EM, followed by cryo-transfer to the
TEM for tomography. Preliminary work suggests that the
thinned layer remains vitrified, without noticeable effects of the
ion beam exposure. The method produces a smooth surface,
importantly, without section compression or crevasses, thus
avoiding the mechanical artifacts of cryo-sectioning.

2.2. Interaction of Electrons with the Specimen
Imaging with electrons provides the advantage of high resolu-

tion, due to their short wavelength. However, the strong inter-
action of electrons from the primary electron beam with the
sample causes radiation damage in the sample. The nature of the
interaction of the electrons with the sample depends on the
electron energy and sample composition.49 Some electrons pass
through the sample without any interactions, others are deflected
by the electrostatic field of the nucleus, screened by the outer
orbital electrons of specimen atoms, and some electrons may
collide or nearly collide with the atomic nuclei, suffering high angle
deflections or even backscattering. Of the interacting electrons,
some are scattered without energy loss (elastic scattering), but
others transfer energy to the specimen (inelastic scattering)
(Figure 3a). Energy transfer from incident electrons can ionize
atoms in the specimen, induce X-ray emission, chemical bond
rearrangement, and free radicals, or induce secondary electron
scattering, all of which change the specimen structure. Radiation
damage of specimens is a significant limitation in high-resolution
imaging of biological molecules. Prolonged exposure to an intense
electron beam in an EM produces a level of damage comparable
to that caused to living organisms exposed to an atomic explosion.50

Typical values of electron exposure used for biological samples
range from 1 to 20 electron/Å2. Although biological specimens
can tolerate an exposure of 100�500 e�/Å2, depending on speci-
men temperature and chemical composition, the highest resolu-
tion features of the specimen are already affected at electron

Figure 2. Slices of single axis tomograms of yeast cell sections prepared by freeze-substitution (a) and cryo-sectioning of vitrified samples (b). The black
dots are mainly ribosomes. R, ribosomes; N, nucleus; V, vacuole; MT, microtubules (ring shaped cross sections); M, mitochondrion; ER, endoplasmic
reticulum. Panel (b) was produced by Dan Clare.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-001.jpg&w=360&h=174
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exposures of 10 e�/Å2 or less.51 Therefore, radiation damage
dictates the experimental conditions and limits the resolution of
biological structure determination, especially for cryo-tomogra-
phy. To reduce radiation damage during area selection, align-
ment, and focusing, special “low dose” systems are used to deflect
the beam until the final step of image recording.52,53 An example
of electron beam damage is shown in Figure 3b.54 Lower electron
doses can be used for two-dimensional (2D) crystals than for
single particles, because the signal from all unit cells is averaged in
each diffraction spot. Therefore, the diffraction spots are visible
even when the unit cells are not visible in the image.55,56

2.3. Image Formation
The basic principle of electron optical lenses is the deflection

of electrons, negatively charged particles of small mass, by an
electro-magnetic field. Similar to a conventional light micro-
scope, the EM consists of an electron source, a series of lenses,
and an image detecting system, which can be a viewing screen, a
photographic film, or a digital camera. Electron microscopy has
made it possible to obtain images at a resolution of ∼0.8 Å for
radiation-insensitive materials science samples,57 1.9 Å for elec-
tron crystallography of well-ordered 2D protein crystals,58 3.3 Å
for symmetrical biological single-particle macromolecular
complexes,15 and 5.5 Å for the ribosome.16,17

2.3.1. Electron Sources. The standard electron source is a
tungsten filament heated to 2000�3000 �C. At this temperature,
the electron energy is greater than the work function of tungsten.
The thermally emitted electrons are accelerated by an electric
field between the anode and filament. Another common electron
source is a LaB6 crystal, which produces electrons from a smaller
effective area of the crystal vertex whose emitting surface is at a
lower temperature because of a lower work function. This beam
has higher coherence and current density. At present, the most

advanced electron source, used in high performance micro-
scopes, is the field emission gun (FEG).59 The FEG beam is still
smaller in diameter, more coherent, and∼500� brighter, with a
very small spread of energies.59 This is achieved by using single

Figure 4. Simplified schematic representation of an electron microscope.

Figure 3. Interaction of the electron beam with the sample. (a) Schematic of elastic and inelastic electron scattering. Collision of beam electrons with
atomic electrons or nuclei leads to energy loss (inelastic scattering), while deflection by the electron cloud does not change the energy of the electron
(elastic scattering). (b) Effect of electron beam damage on a cryo image of a cell. The electron dose is shown on the images. Increasing dose causes
damage to cellular structures, but different cell regions and materials show the effects of damage at different levels of radiation. In this case, damage first
appears on the Weibel Palade bodies. Reproduced with permission from ref 54. Copyright 2009 National Academy of Sciences.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-002.jpg&w=180&h=281
http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-003.jpg&w=503&h=239
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crystal tungsten sharpened to give a tip radius ∼10�25 nm, as
compared to 5�10 μm for LaB6 crystals. The tip is coated with
ZrO2, which lowers the work function for electrons. Thermally
emitted electrons are extracted from the crystal tip by a strong
potential gradient at the emitter surface (field emission), and
then accelerated through voltages of 100�300 kV.
2.3.2. The Electron Microscope Lens System. As in light

microscopy, condenser lenses convert the diverging electron
beam into a parallel one illuminating the specimen (Figure 4).
The specimen in modern electron microscopes is located in the
middle of the objective lens, fully immersed in the magnetic field.
An objective aperture is placed in the back focal plane of this lens;
the aperture prevents electrons scattered at high angles from
reaching the image plane, thus improving the image contrast. The
objective lens provides the primary magnification (20�50�)
and is the most important optical element of the electron
microscope. Its aberrations play a key role in imaging. The image
is further magnified by intermediate and projector lenses before
the electrons arrive at the detector. Alternatively, the electron
diffraction pattern at the back focal plane of the objective can be
recorded after being magnified.
2.3.3. Electron Microscope Aberrations. Electromagnetic

lenses have the same types of defects as optical lenses, spherical
and chromatic aberrations, curvature of the field, astigmatism,
and coma,60 of which the most significant are spherical, chro-
matic, and astigmatic aberrations (Figure 5). The quality of the
beam source is essential for coherence of the electron beam
needed for high-resolution imaging. Spherical aberration is an
image distortion due to the dependence of the ray focus on the
distance from the optical axis (Figure 5b). Rays passing through
the periphery of the lens are refractedmore strongly than paraxial
rays. Chromatic aberration is caused by the lens focusing rays
with longer wavelengthsmore strongly so that part of the image is

formed in a plane closer to the object, resulting in “colored” halos
around edges in the images (Figure 5c). Chromatic aberration in
electron microscopes results from variations in electron energy
caused by voltage variation in the electron source, electron
energy spread in the primary beam, and energy loss inelastic
events in the sample, and blurs the fine details in images. Astigmatic
aberration is produced by deviation from axial symmetry in the
lens, so that the lens is slightly stronger in one direction than in
the perpendicular direction. Astigmatism in electron microscopes is
caused by an asymmetric magnetic field in the lenses and can be
compensated by stigmator coils. It results in two different image
planes corresponding to these directions so that the image of a
point becomes an ellipse (Figure 5d). The aberrations described
here are the major ones that affect the images, although there are
also other, higher order aberrations, which must be considered
for high-resolution analysis.61

2.4. Contrast Transfer
Normally, images represent intensity variations caused by

regional variations in specimen transmission. These variations
are recorded by a detector system; the image contrast Contim is
defined as the ratio of the difference between brightest Fmax and
darkest Fmin points in the image and the average intensity of the
whole image:

Contim ¼ Fmax � Fmin
F

ð1Þ

The image contrast resulting from absorption of part of the
incident beam is known as amplitude contrast (Figure 6).
Because only a small fraction of the electrons is actually absorbed
by the biological specimen in inelastic interactions, the amplitude
contrast can also be increased by using the objective lens aperture
to eliminate electrons scattered at high angles.59

Figure 5. Ray diagrams of lens aberrations: (a) perfect lens, (b) spherical, (c) chromatic, and (d) astigmatic aberration. F is the focal length of the lens.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-004.jpg&w=400&h=273
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One of the difficulties of biological electron microscopy is that
biological molecules produce very little amplitude contrast. They
consist of light atoms (H, O, N, and C) and do not absorb
electrons from the incident beam but rather deflect them, so that
the total number of electrons in the exit wave immediately after
the specimen remains the same. That means that the specimens
do not produce any intensity modulation of the incident beam
and the image features are not visible. Yet these specimens still
change the exit wave because electrons interact with the material.
Electrons undergo scattering at varying angles so they have
different path lengths through the specimen, giving phase con-
trast (Figure 7). One can say that they experience a location-
dependent phase shift. These phase variations encoded in the exit
wave are made visible by being converted into amplitude varia-
tions that are directly detectable by a sensor. In practice, this is
achieved by introducing a 90� phase shift between incident and
scattered waves.
2.4.1. Formation of Projection Images. In the case of

elastic scattering, the scattering angle is proportional to the
electron potential of the atom (the higher is the atomic number,
the higher is its electron potential). The exit wave that has passed
through the sample can be described as

Ψsamð rBÞ ¼ Ψ0 expðiσjprð rBÞÞ ð2Þ

whereΨsam is the exit wave emerging from the specimen;Ψ0 is
the incident wave; σ = meλ/(2πp

2); me is electron mass; λ is
electron wavelength; p = h/2π; h is Planck’s constant; andjpr(rB) =R
�t/2
+t/2 j(rB,z) dz is the specimen potential projected along

the z direction, which coincides with the optical axis of the

microscope, rB is a vector in the image plane, and t corresponds to
the thickness of the sample.
Because biological specimens in general are weak electron

scatters, the phase shift introduced by the sample is small; that is,
the exponent term in eq 2 is close to unity, which makes it
possible to describe the exit wave by the following approximation:

Ψsamð rBÞ≈Ψ0ð1 þ iσjprð rBÞÞ ð3Þ

The transmitted wave Ψsam(rB) consists of two parts: the first
term corresponds to the unscattered wave, and the second term,
corresponding to the deflected (scattered) electrons, is linearly
proportional to the specimen potential. The second term Ψs =
Ψ0iσjpr(rB) has a phase shift of 90�, because it corresponds to
the imaginary part of the expression indicated by the factor i
(Figure 8a and b). In the following discussion, we assume that the
amplitude of the incident wave Ψ0 = 1.
2.4.2. Contrast for Thin Samples. The image is formed by

all electrons, both scattered and unscattered, giving very little
contrast for thin, unstained biological specimens. This is known
as phase contrast, which results from interference of the unscat-
tered beamwith the elastically scattered electrons (Figures 7 and 8).
Thin transparent samples scatter electrons through small angles
and are described as weak phase objects.59 The intensity dis-
tribution observed in the image plane will be given by

Ið rBÞ ¼ Ψsamð rBÞΨ�
samð rBÞ≈ 1 þ ðσjprð rBÞÞ2 ð4Þ

where “*” denotes the complex conjugate. However, the magni-
tude of (σjpr(rB))

2 is ,1, so the image will have practically no
contrast. To increase the contrast, it is necessary to change the

Figure 7. Phase contrast. (a) A phase object illuminated by a parallel
beam. (b) The resulting image shows only weak features. (c) A cross
section of the object outlined by dashed lines in (A). Arrows show the
changes in the wavefront (parallel lines) after interaction with the
sample. The intensity is not changed, but the wavefront becomes curved.
(D) Intensity of the rays creating the image in the region of the cross
section. Note that the intensity differences are small.

Figure 6. Amplitude contrast. (a) An amplitude object illuminated by a
parallel beam. (b) The image resulting from interaction of the beamwith
the sample. (c) A cross section of the object outlined by the dashed lines
in (a); some of the rays are absorbed in the sample. Arrows show the
changes in the wavefront after interaction with the sample. (d) Intensity
of the rays creating the image in the region of the cross section. Black
dots in the image correspond to areas of beam absorption (c).

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-005.jpg&w=240&h=250
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phase of the scattered beam jpr(rB) by 90� (Figure 8c and d),
which changes the exit wave as follows:

Ψsamð rBÞ≈ 1� σjprð rBÞ ð5Þ
The intensity in the image plane then can be approximated by the
following expression:

Ið rBÞ ¼ Ψsamð rBÞΨ�
samð rBÞ≈ 1� 2σjprð rBÞ ð6Þ

Here, the intensity becomes proportional to the projection of the
electron potential of the sample, and the magnitude of 2σjpr(rB)
will be much greater than (σjpr(rB))

2. Therefore, the phase shift
of the scattered beam transfers the invisible “phase” contrast into
amplitude contrast that can be recorded. How in practice can the
contrast be increased? One method is to use substances that
increase the scattering, such as negative stains. Another possibi-
lity is to utilize imperfections of the microscope such as spherical
aberration.
In practice, the image contrast obtained depends on the

operating conditions of the microscope such as the level of focus
and aberrations. Multiple scattering of electrons within thick
specimens obscures the relation between object and image.
There are several factors that affect the appearance and contrast
of an EM image including lens aberrations, limited incident beam
coherence, quantum noise because of the discrete nature of
electrons (shot noise), radiation stability of the sample, instabil-
ities in themicroscope, and environment, for example, vibrations,
stray electromagnetic fields, temperature changes, and imperfect
mechanical stability of the EM column. Instabilities and limited
coherence of the electron beam cause falloff of the signal transfer
by the microscope for fine image details, leading to blurring of
small features. In simple terms, a sharp dot will not be imaged as a
dot but as a blur. The link between the original dot and its image
is described by the point spread function (PSF) of the imag-
ing device, in our case of the electron microscope. The PSF
is a function that describes the imperfections of the imaging
system in real space. However, a convenient way to describe
the influence of these factors on the image is to use Fourier

(diffraction) space:

FfΨobsð rBÞg ¼ FfΨsamð rBÞg 3CTFðRBÞ 3 EðRBÞ ð7Þ
where F{Ψobs} is the Fourier transform of the observed image; RB
is spatial frequency (Fourier space coordinate); F{Ψsam} is the
Fourier transform of the specimen; CTF(RB) is the contrast
transfer function of the microscope; and E(RB) is an envelope
function. E(RB) describes the influence of various instabilities and
specimen decay under the beam.62 The envelope decay can be
partly compensated by weighting, for example, with small angle
scattering curves (see section 8.3). The optical distortions are
usually approximated as a product of functions attributed to
individual damping factors (e.g., lens current instability). The
link to the PSF is given by the following equation:

FfPSFð rBÞg ¼ CTFðRBÞ 3 EðRBÞ ð8Þ
The amplitude and phase changes arising from objective lens
aberration, or CTF(RB), are usually described by the function
exp(iγ), where γ describes the phase shift arising from spherical
aberration and image defocus:59

γðRBÞ ¼ � 2π
1
2
ΔλRB

2 � 1
4
Csλ

3RB
4

� �
ð9Þ

where γ is the phase shift caused by aberrations, RB is spatial
frequency, a vector in the focal plane of the objective lens, Cs is
the coefficient of spherical aberration, λ is the wavelength of the
electron beam, and Δ is the defocus, the distance of the image
plane from the true focal plane.
It was found that the image contrast of biological objects could

be improved by the combined effects of spherical aberration and
image defocus, moving the image plane away from exact focus.63

The basis for the contrast enhancement is that spherical
aberration combined with defocus induces a phase shift between
scattered and unscattered electrons. The greater phase shift
between scattered and unscattered rays leads to stronger
image contrast.

Figure 8. Graphical representation of phase contrast. (a) Complex plane representation of a wave vectorψ with phase θ. (b) Vector representation of
the scattered waveψs, unscattered waveψu, and resultant waveψsam =ψu + iψs. Amplitudes (vector lengths) ofψsam andψu are very similar, resulting in
low image contrast. (c)�π/2 phase shift of the scattered wave leads to a noticeable decrease in the resultant wave amplitude relative to the unscattered
wave (negative phase contrast). (d) π/2 phase shift of the scattered wave increases the amplitude of the resultant wave relative to the unscattered wave
(positive phase contrast).

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-007.jpg&w=400&h=184
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The diffraction pattern of the image (image plane of the
microscope) is given by

PðRBÞ ¼ FfΨobsð rBÞgF�fΨobsð rBÞg

¼ ðδðRBÞ � 2Ffϕð rBÞg cosðγðRBÞÞ

� 2Ffϕð rBÞg sinðγðRBÞÞÞE2ðRBÞ ð10Þ
where δ(RB) is the Dirac delta function.
In the plane of the image, the amplitude contrast is described

by 2 cos γ and the phase contrast by 2 sin γ (for a more detailed
description of image formation, see refs 60 and 63). For phase
objects, the sine term of eq 10 has the major influence. It
describes an additional phase shift due to spherical aberration
and changes in the image contrast depending on defocus. The
major effect of the CTF on images of weak phase objects arises
from oscillations of the sin γ term that reverse the phases of
alternate Thon rings in the Fourier transform of the image64

(Figure 9). For thin cryo specimens, the amplitude contrast for
120 keV electrons has been estimated at 7%, whereas for
negatively stained samples the amplitude contrast can rise to
25%.53 For 300 keV cryo images, it drops to ∼4%.65

2.5. Phase Plates and Energy Filters
The very small phase shifts induced by biological samples in

the scattered electrons result in poor image contrast. In phase
contrast light microscopy, the imaging of phase objects is enabled
by the use of a quarter-wave phase plate,66 which produces visible
contrast by shifting the phase of the scattered light relative to that
of the transmitted beam by 90�, leading to constructive inter-
ference (Figure 10a,b67). An equivalent solution for electron
microscopy was pioneered by Boersch.68

An early attempt to create a device to change the phase of the
central beam relative to the scattered rays was done by Unwin,
who devised a simple electrostatic phase plate that was inserted
into the optical system.69 He used a thin poorly conducting
cylinder (a spider’s thread) over a circular aperture inserted in the
back focal plane of the objective lens (where the electron
diffraction pattern is formed). This cylinder partly obstructed
the central beam and became charged when illuminated by the
electron beam, thus creating an electrostatic phase plate. The first
experiments with negatively stained samples clearly demon-
strated increased contrast.

The practical realization of this idea has only recently become
feasible. Microfabrication has allowed the construction of the first
miniature phase plates, which are positioned in the back focal
plane of the objective lens (Figure 10c,d). The phase plate
functions as an electrostatic lens and is placed in the path of
the scattered electrons, shifting their phase by 90� so that
contrast is improved when they recombine with the unscattered
electrons in the image plane of the TEM.67,70�72 The resulting
large increase in contrast over a wide resolution range,
especially at low resolution, is particularly useful for electron
cryo-tomography.73

An additional approach to improving image contrast is energy
filtering. A fraction of the electrons reaching the objective lens
are inelastically scattered, having lost energy by interaction with
the sample atoms. The lower energy (corresponding to longer
wavelength) of these electrons causes them to be focused in
different planes from the elastically scattered electrons, in other
words, chromatic aberration. Therefore, inelastic electrons degrade
the recorded image with additional background and blurring, in
addition to damaging the sample. Energy filters can be used to
stop these electrons from contributing to the image after their
interaction with the specimen. Filtering works on the basis that

Figure 9. Images of carbon film and their diffraction patterns, showing Thon rings and corresponding CTF curves. The left image was obtained at 0.5 μm
defocus, and the middle image was at 1 μm defocus. The Thon rings of the second image are located closer to the origin and oscillate more rapidly.
The rings alternate between positive and negative contrast, as seen in the plotted curves. An example of an astigmatic image and its diffraction pattern is
shown in the right panel. The largest defocus is along axis a, and the smallest is along axis b.
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electrons of different wavelength can be deflected along different
paths, and the filter can be either in the column (Ω filter) or post
column (GIF). The use of energy filtering to improve the
contrast of cryo EM images was introduced by Trinick and
Berriman74 and Schr€oder.75 Energy filtering is most important
for tomography, because of the long path length of the beam
through the tilted sample. An in-column filter has recently been
used to obtain very high-quality images of actin filaments,76 and
the authors attribute a significant part of the contrast improve-
ment to the filtering.

3. IMAGE RECORDING AND PREPROCESSING

3.1. Electron Detectors
3.1.1. Photographic Film. Until recently, the conventional

image detector was photographic emulsion. The light-sensitive
components in films aremicroscopic silver halide crystals embedded
in a gelatin matrix. Absorption of incident radiation by the crystals
induces their transition into ametastable state, thus recording the
image. The image remains hidden until photographic developer
transforms silver halide into visible silver grains. The optical
density OD = log(1/T), where T is the transmission of the film.
The OD of the film in response to illumination dose, the number
of photons/electrons per unit area, initially increases linearly
with dose, then starts to saturate and eventually reaches a plateau
at high dose, although it is S-shaped for light. At low energy
(10�80 keV), optical density is directly proportional to electron
energy, and the peak sensitivity is around 80�100 keV. Within
the current working range of electron energy (100�300 keV),
the speed of EM films is inversely related to the electron energy:
higher-energy electrons interact less with the silver halide
crystals, leading to lower OD for the same irradiation dose.

Therefore, emulsions produced for electron microscopy are
optimized for sensitivity to 100�300 keV electrons, with large
grain size and high silver halide content. The filmmainly used for
TEM is Kodak SO-163, which provides good contrast at low
dose.77 The advantage of photographic film is the extremely fine
“pixels” and the large image detection area. Photographic film is
still the most effective electron detector, in terms of spatial
resolution over a large area (number of effective pixels) and cost.
The inconveniences of using films are that they introduce an
additional load on the microscope vacuum system due to the
presence of adsorbed water and they need chemical processing,
drying, and digitization.
3.1.2. Digitization of Films. Films must be digitized for

computer analysis. To convert the optical densities of the film
into digital format, the film is scanned with a focused bright beam
of light. The transmitted light is focused on a photo diode
connected to a photo amplifier that produces an electrical signal.
The intensity of the current is converted into a number related to
the optical density of the film. The densitometer measures the
average density within square elements (pixels) whose size is
determined by the sampling resolution. Linear CCD detectors
are used to measure a line of pixels in parallel.
Digitisation does not provide a faultless transfer of optical

density into digital format. The accuracy is determined by the
quality of the optical system and the sensitivity of the photo
detectors and amplifiers. Densitometer performance can be
described in terms of the modulation transfer function (MTF),
which is defined as the modulus of the densitometer’s transfer
function.78 The output image is considered as the convolution of
the input image with the point spread function of the densit-
ometer. The dependence of MTF on spatial frequency describes
the quality of signal transfer. A strong falloff of the MTF at high

Figure 10. Phase contrast in optical and electron microscopy. (a) Bright field (upper panel) and phase contrast (lower panel) images of a field of cells.
The cells are approximately 50 μm in length. Panel (a) was provided byMaud Dumoux and Richard Hayward. (b) Schematic representation of the light
microscope. (c) Schematic representation of the electron microscope for comparison, showing the major lenses. The positions of phase plates are
indicated. (d) Images of GroEL taken without (upper panel) and with the phase plate (lower panel). Scale bars, 20 nm. Image (d) is reproduced with
permission from ref 67. Copyright 2008 Royal Society Publishing.
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frequencies indicates the loss of fine details in the digitized
images. Densitometer characteristics and assessments have been
described in several articles.79,80

3.1.3. Digital Detectors. Digital imaging has practically
replaced recording on films in photography and is widely used
in EM due to developments in automated data collection and
tomography methods. The most popular cameras are based on
charge-coupled device (CCD) sensors that convert the analogue
optical signal into digital format. The CCD was invented in 1969
by W. S. Boyle and G. E. Smith at Bell Telephone Laboratories
(Nobel prize, 2009).81 The physical principle of this device is
analog transformation of photon energy (light) into a small
electrical charge in a photo sensor and its conversion into an
electronic signal. CCD chips consist of an array or a matrix of
photosensitive elements (wells) that converts light into electric
charge accumulated in the wells (Figure 11). “Charge-coupled”
refers to the readout mechanism, in which charges are serially
transferred between neighboring pixels to a readout register,
amplified, and converted to a digital signal. The readout is done
through one or several ports, which determines the speed of
CCD image recording.
Because high-energy electrons irreversibly damage the photo-

sensitive wells in CCDs, currently available devices employ
mono- or polycrystalline scintillators to convert the electrons to
photons, which are then relayed to the CCD chip (Figure 11).
Although the graininess of the scintillator and electron-to-photon
conversion add noise to the images, the use of a scintillator
greatly extends the usable life of a CCD chip. This detection
scheme works quite well for accelerating voltages up to 120 kV.
At higher voltages, the camera sensitivity decreases, and, to
compensate, thicker scintillator layers are needed to improve
the electron detection efficiency. In addition, image quality is
degraded because the higher-energy electrons are scattered in the
scintillator, reducing image resolution.
The CCD is a very sensitive and effective electron detector

with remarkably linear response and very large dynamic range
(16 bit resolution). This allows recording of both low contrast
images and electron diffraction patterns in which diffraction
intensities can range over several orders of magnitude. The
disadvantage of this type of camera is the high cost and limited
sensor size. CCD chips of 5 � 5 cm2 (4k � 4k pixels) are now
widely used, and digital cameras with 8k� 8k sensors and 12 cm
in diameter are available. The typical size of current CCDpixels is

14�15 μm,which imposes additional restrictions on theminimal
magnification used to record images, because the image sampling
by the CCD should be finer than the target resolution by about a
factor of 4 (see section 8). Examples of successful use of CCD
imaging for high-resolution cryo-EM at 300 kV are shown by
Chen with coauthors82 and Clare and Orlova.83

The current generation of digital detectors for electron micro-
scopy includes a direct detection device (DDD), which can be
exposed directly to the high energy electron beam. Hybrid pixel
detectors such as Medipix2 are direct electron detectors that
count individual electrons, rather than producing a signal pro-
portional to the accumulated charge.84 Another type of new
DDD is the monolithic active pixel sensor (MAPS), in which the
signal is proportional to the energy deposited in the sensitive
element.85 The DDD uses a radiation-hardened monolithic
active-pixel sensor developed for charged particle tracking and
imaging and smaller pixel size (5 μm).86,87 These detectors are
being combined with the CMOS (complementarymetal�oxide�
semiconductor) design, in which the amplifiers are built into each
pixel, enabling local conversion from charge to voltage and thus
faster readout. Direct exposure to the incident electron beam
significantly improves the signal-to-noise ratio in comparison to a
CCD. This type of sensor has high radiation tolerance and allows
for capture of electron images at 200 and 300 keV. A comparison
of digital detectors demonstrated that DDD in combination with
CMOS can provide good DQE, MTF, and improved signal-to-
noise ratio at low dose.87,88

Design of digital cameras in EM continues to improve: the
latest cameras are able to register electrons over a broad energy
range and cover large areas with smaller pixels so that the detector
area (16k � 16k pixels) becomes comparable to or bigger than
EM films.84,87,89

3.2. Computer-Controlled Data Collection and Particle Picking
The goal of automated data collection is to replace the human

operator in time-consuming, repetitive operations such as search-
ing for suitable specimen areas and recording very large data sets,
including low-dose operation, particle selection, and obtaining
tilt data.90 Most EMs now have computer-controlled operation
for lens settings and stage movement, along with basic image
analysis operations such as FTs. Essential steps to control are
settings for illumination, stage position, magnification, tilt, and
focus. The automation systemmust be able to recognize the same

Figure 11. Diagram of a CCD detector for EM. The incident electrons are converted to photons by the scintillator. Fiber optics transmit the image to
the CCD (charge coupled device) sensor where the photons generate electrical charge (CCD electrons). The charge is accumulated in parallel registers.
During readout, this charge is shifted line by line to the serial register from where it is transferred pixel by pixel to the output analog-to-digital converter.
Image reproduced with permission from H. Tietz.
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region at different magnification scales, so that objects selected in
a lower magnification overview can be located for data collection,
in particular after stage movements. The software must compen-
sate for inaccuracies in mechanical stage positioning. This
compensation is done by collecting overview images and finding
the areas of interest by cross-correlation with previously recorded
images, so that the selected area can be positioned with sufficient
precision for high-magnification recording. For all of these opera-
tions, electronic image recording is essential, and the availability
of high-resolution CCD cameras has enabled the development of
automation. Several automation systems have been developed,
both by academic users (e.g., Leginon;90 JADAS91) and by EM
suppliers (FEI, JEOL systems). Some of them are coupled to data
processing pipelines that extend the automation through the
stages of particle picking and image processing (e.g., Appion92).
Serial EM is a widely used system that provides semiautomated
procedures for manually selecting a series of targets for subse-
quent unsupervised collection of tomograms and can also be
used for single-particle data.93

In single-particle EM, data processing begins with particle
selection. Conventionally, the particles are identified by shape
and characteristic features that are often difficult to recognize for
a new complex. Even for known complexes, manual selection of
∼100 000 single-particle images is prohibitively time-consuming
and tedious. Not surprisingly, the idea of automating particle
selection has been a focus of research efforts. The first computa-
tional methods were based on template matching,94,95 and more
sophisticated approaches were subsequently based on pattern
recognition.96 A comparative evaluation of different programs
can be found in the review by Zhu and coauthors,97 and other
programs have been developed more recently.98

3.3. Tomographic Data Collection
The purpose of electron tomography is to obtain a 3D

reconstruction of a unique object, such as a cell section, isolated
subcellular structure, or macromolecular complex, that can take
up a variety of different structures. A series of images of the same
region is recorded over the largest possible range of tilt angles, up
to �70� to 70�. The limitation on tilt is ultimately due to the
increased path length of the beam through the sample, although
the specimen holder may also limit the tilt. Electron tomograms
will therefore be missing information from a 40�60� wedge of
space, resulting in some distortion to the 3D map (Figure 1299).

The high tilt, especially of thicker specimens, increases the
inelastic scattering and multiple elastic scattering, therefore
reducing the fraction of coherent electrons useful in image
formation, in the scattered beam. The energy-loss electrons
can be removed from the image by an energy filter, which is
particularly important for improving contrast in tomography.

For plastic sections, the initial exposure to the beam causes
thinning of the sections, but subsequently the sample changes
little during data collection. Therefore, data collection with fine
angular steps is possible. Room temperature tomography also
facilitates dual-axis data collection, in which a second tilt series is
collected after 90� rotation of the specimen in the plane of the
stage, so that the missing wedge is reduced to a missing pyramid.
Therefore, data collection can be optimized for plastic sections,
but dehydration and staining do not preserve molecular detail.
However, as mentioned above, sections up to 300 nm thick can
be used to give a 3D overview of larger structures.

On the other hand, in electron cryo-tomography, the molec-
ular structure is preserved in the frozen-hydrated sample, but it is
hard to get beyond 3�4 nm resolution. The resolution of cryo-
tomography is severely limited by radiation damage, because at
least 50�100 images must be collected of the same area for the
tilt series. These conflicting requirements for low dose and many
exposures mean that the images are recorded with extremely low
electron dose and therefore very low SNR, and the accumulated
damage changes the structure during the tilt series. The thicker is
the sample, the more views are needed to reach a given resolu-
tion. In addition, the limitation on maximum tilt angle leaves a
missing wedge of data. These problems make processing of cryo-
tomograms more difficult. The best resolution is obtained by
averaging subregions of cryo-tomograms containing multiple
occurrences of the same object, for example, viral spikes (see
section 4.4). This method is called subtomogram averaging.

Automation is indispensable for electron tomography.100

Well-developed tomography software is available from both
academic and commercial sources (SerialEM;93 UCSFTomo;101

Protomo;102 TOM;103 Xplore3D;104 IMOD105,106). Leginon
incorporates tomographic and other tilt data collection protocols
such as conical tilt (section 6.1).107

3.4. Preprocessing of Single-Particle Images
Although theoretical and technical progress in electron micro-

scopy has improved the imaging of weak phase objects, defocusing

Figure 12. Distortions caused by the missing wedge. (a) A model object. (b) Set of image planes at different angles from a tilt series. The limitation on
maximum tilt angle results in a missing wedge of data. (c) Reconstruction of the object showing elongated features due to the missing wedge.
Reproduced with permission from ref 99. Copyright 1998 Elsevier Inc.
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complicates the interpretation of the image because features in
some size ranges will have reversed contrast. Imaging of biolo-
gical objects requires a compromise between contrast enhance-
ment and minimization of image distortions.

The intensity distribution in the EM image plane is related to
the projected electron potential by

Ið rBÞ ¼ Ψobsð rBÞΨ�
obsð rBÞ≈ 1 þ σjprð rBÞ X F�1fsin γg

ð11Þ
where sinγ is the phase contrast transfer function andγ is defined
by eq 9. F�1{sinγ} defines the shape of the image of a point in the
object plane formed by the microscope optics, the point spread
function (PSF) of the microscope. Therefore, the real image is
distorted, because the ideal object image is convoluted with
the PSF, and is not directly related to the density distribution in
the original object. To restore the image, so that it corresponds to
the projected electron potential of the sample, the image must be
corrected for the effect of contrast modulation by sin γ, the
microscope phase contrast transfer function (CTF). The CTF,
modified by an envelope decay, and the PSF of a microscope are
related by Fourier transformation. For weak phase objects,
deconvolution with the PSF of the microscope is necessary for
complete restoration of image data. The procedure of eliminating
the effects of the CTF is called CTF correction.
3.4.1. Determination of the CTF. For a given microscope

setup, the voltage and spherical aberration are constant, but the
defocus varies from image to image because of variations in lens
settings, sample height, and thickness. There are two main
approaches for determination and correction of the CTF. In
the first one, the images are CTF-corrected before structural
analysis. In the second approach, structural analysis is done
separately on each micrograph, and determination and correc-
tion of the CTF are performed on the structures obtained. Each
approach has its own advantages and disadvantages.
If CTF correction is done first, data can be combined from

many different micrographs and subsequently processed to-
gether. The second method is applicable if each micrograph
has a sufficient number of particles to calculate a 3D reconstruc-
tion. This method works well for particles at high concentration
and has the advantage that CTF determination is more accurate
because of the high SNR in the reconstruction, in which the
images have been combined. However, with fewer particles and
lower symmetry, it will not be possible to get a good reconstruc-
tion of the object from a single micrograph, so that the first
approach is more practical.
Manual CTF determination108 involves calculation of the

rotationally averaged power spectrum (diffraction intensity) of
a set of 2D images, which can only be done in the absence of
astigmatism. The amplitude profile (square root of the inten-
sities) is compared to a model CTF. The model defocus is varied
to find the best match between the two profiles. The value
corresponding to the match is then used as the defocus for that
particular set of images. It is also possible to include additional
processing steps such as band-pass filtering to remove back-
ground and provide smoothing for more accurate detection of
the positions of the CTF minima.
The rotational averaging used in the above method assumes

good astigmatism correction. Software developed byMindell and
Grigorieff (CTFFIND3109) searches for the best match of ex-
perimental with theoretical CTF functions calculated at different
defoci. This software includes the determination of astigmatism

in the images, assuming that its effect on the CTF can be
approximated by an ellipse (valid for small astigmatism), with
averaging of the profiles over sectors of the ellipse. Scripts can be
used to automate the search and correction.
In some studies, statistical analysis has been employed to sort

power spectra of particle images (squared amplitudes of the
image Fourier transform) into groups with similar CTF. Class
averages of the spectra provide a higher SNR for CTF deter-
mination.110 Other, more sophisticated approaches that take into
account background and noise are described by Huang111 and
Fern�andez and coauthors.112 A fully automated program, ACE,
implemented in Matlab, incorporates a model for background
noise and uses edge detection to define the elliptical shape of the
Thon rings.113

3.4.2. CTF Correction. The representation of the object of
interest is considered as faithful if the EM images corresponding
to its projections are corrected for the effects of the microscope
CTF. A full restoration of the specimen spectrum requires
division of the F{Ψsam(rB)} (eq 7) by the CTF, sin γ. However,
this operation is not possible because of the CTF zeroes, and the
spectrum cannot be restored from images taken at a single
defocus. To fully restore the information, it is necessary to use
images taken at different defocus values, so that zeroes of each
particular CTF will be filled by merging data from images with
different defoci (Figure 13).
3.4.2.1. Phase Correction. The simplest method of CTF

correction is to flip the image phases in regions of the spectra
where sin γ reverses its sign. In many cases, this produces reliable
reconstructions because a large number of images with different
defoci are merged together, leading to restoration of information
lost in individual images in the vicinity of CTF zeroes. Practically
all EM image analysis software packages have options for this
type of CTF correction.
3.4.2.2. Amplitude Correction and Wiener Filtration. A

more advanced method of information restoration is correction
of both amplitude distortions and phases of the image spectra.
This correction usually takes into account not only CTF oscilla-
tions but also compensates for the amplitude decay at high spatial
frequencies. In theory, the following operation should be suffi-
cient:

Imcor ¼ F�1fFfImg=FfPSFgg ¼ F�1fFfImg=CTFg
ð12Þ

where Im is the recorded image, PSF is the point spread function
of the microscope, the Fourier transform of which is CTF, and
Imcor is the corrected image. If there were no noise in the image
spectra, reliable correction could be done everywhere except for
points where the CTF is zero. In practice, small CTF values
suppress signal transfer in these regions, and noise unaffected by
the CTF dominates the spectra there. Thus, simply dividing the
image spectra by the CTF would lead to preferential amplifica-
tion of noise. To avoid this, a Wiener filter114 is used to take
account of the SNR and perform an optimal filtration to correctly
restore the spectra:

Imcor ¼ F�1 FfImgCTF
CTF2 þ c

� �
ð13Þ

where c is a function of SNR: c = 1/(SNR).
Multiplication of the Fourier transform of the image by the

CTF corrects the image phases, while division by CTF2 + 1/(SNR)
provides the amplitude correction. Addition of 1/(SNR) to the
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denominator is necessary to avoid division by values close to
zero115 (Figure 14). Amplitude correction has been implemen-
ted in EMAN,116 SPIDER,117 Xmipp,118 and other software
packages. To visualize high-resolution details, it is also important
to correct the envelope decay of image amplitudes at high spatial
frequencies (see section 8.3).
3.4.3. Image Normalization. After CTF correction, the

image of a weak phase object can be considered as a reasonable
approximation of the 2D projection of the 3D object, except for
the regions affected by CTF zeros, where the signal is low. This
allows the process of image analysis to progress toward determi-
nation of the 3D density distribution for the object. Nonetheless,
some important steps of preprocessing are necessary.
Even with the same EM settings during data acquisition,

variations in specimen particle orientation, support film thick-
ness, and film processing conditions lead to differences in image
contrast. In addition, structural analysis requires the merging of
image data collected during multiple EM sessions. Optimization
of data processing requires standardization of images known as
normalization. It is conventional in EM image processing to set
the mean density of all particle images to the same level, usually
zero, and to scale the standard deviation of the densities to the
same value for all images, which is important for the alignment
procedure.
Images are normalized using the formula:

Fnormi, j ¼ Fi, j � F
σold

σnew ð14Þ

σold is the standard deviation of the original image, and σnew is the
target standard deviation in the data.
The mean density of the images is defined as

F ¼
∑
I, J

i, j¼ 1
Fi, j

I � J
ð15Þ

where I and J are dimensions of the image array, and Fi,j is
the density in the image pixel with coordinates i and j. σold is
defined as

σold ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
I, J

i, j¼ 1
ðFi, j � FÞ2

ðI � 1Þ � ðJ � 1Þ

vuuuut ð16Þ

The normalization sets all images to the same standard deviation
and a mean density of zero.

4. IMAGE ALIGNMENT

The information we wish to extract from EM images, the
signal, is the projected density of the structure of interest. The
recorded images contain, in addition to the signal, fluctuations in
intensity caused by noise frommany different sources. Sources of
noise include background variations in ice or stain, damage to the
molecule from preparation procedures or radiation, and detector

Figure 13. CTF curves, for a single defocus (a), overlaid for two different defocus values (b). The red curve corresponds to a closer to focus image, and
oscillates more slowly. Image (c) shows multiple defocus values. The cyan/green curves correspond to the images with the highest defocus, and the red
curve is closest to focus. (d) The sum of amplitude absolute values of all curves in (c), showing the overall transfer of spatial frequency components in a
data set with the defocus distribution shown. Images courtesy of Neil Ranson.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-012.jpg&w=344&h=300
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noise. The signal-to-noise ratio (SNR) is defined as

SNR ¼ Psignal=Pnoise ð17Þ
where Psignal is the energy (the integral of the power spectrum
after normalization) of the signal spectrum, and Pnoise is the energy
of the noise.

Many views of the particle are recorded in different orienta-
tions, but each individual image has a low SNR. The main task in
extracting the 3D structural information is to determine the
relative positions and orientations of these particle images so that
they can be precisely superimposed. Alignment is done by finding
shifts and rotations that bring each image into register with a
reference image. Cross correlation is the main tool for measuring
similarity of images, but it is not very reliable at low SNR. In
practice, alignments are iterated so that successive averages
contain finer details, which in turn improve the reference image,
for subsequent rounds of refinement.

4.1. The Cross-Correlation Function
The correlation function is widely used as a measure of

consistency or dependency between two values or functions. In
image analysis it is used for assessment of similarity between
images. Cross correlation compares two different images.

CCFð sBÞ ¼

Z
g1ð rB þ sBÞg2ð rBÞ d rBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

g1ð rBÞg1ð rBÞ d rB�
Z

g2ð rBÞg2ð rBÞ d rB

r

ð18Þ
Equation 18 defines the normalized cross correlation function
(CCF) between two functions, g1(rB) and g2(rB), where rB is a
vector in space, and sB is the shift between images. In our case,

images are the 2D functions being compared, and rB and sB are
vectors in the image plane. The images are normalized to a mean
value of zero, to avoid influence of the background level. Without
normalization of the images, the CCF would be offset by a
constant proportional to the product of the mean values of the
images.

The normalized cross-correlation function is maximal when
the two images are identical and perfectly aligned, and the
displacement sBp of the correlation peak from the origin gives
the displacement of image g1 with respect to image g2. It is
quicker to calculate the CCF in Fourier space, because the FT of
the correlation integral is the product of the complex conjugate of
the first image FT with the second image FT.

CCFð sBÞ ¼ F�1 G1
�ðRBÞ � G2ðRBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

jG1ðRBÞj2 dRB�
Z

jG2ðRBÞj2 dRB
r

8>>><
>>>:

9>>>=
>>>;
ð19Þ

where RB is a vector in Fourier space, and G1 and G2 are FTs of g1
and g2.

The cross-correlation of an image with itself is the autocorrela-
tion function (ACF). In crystallography, the ACF is known as the
Patterson function, which is obtained by Fourier transformation
of intensities in diffraction patterns and gives amap of interatomic
distances (correlation peaks between pairs of atoms).

4.2. Alignment Principles and Strategies
Faced with a data set of images of an unknown structure, we do

not have an a priori reference for alignment. A suitable refer-
ence can be generated from the data by approaches known as
reference-free alignment. In one such approach, the first step in

Figure 14. (a) CTF curve from uncorrected data, (b) after phase correction, and (c) overlay of original (black), the square of the curve after rescaling
(red), and amplitude correction (green). Panel (c) courtesy of Stephen Fuller.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-013.jpg&w=344&h=274
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alignment of preprocessed images is to center the particles in
their selected boxes. Particles can be centered either by shifting
the center of mass of the image to the center of the image frame
or by a few iterations of translational alignment to the rotationally
averaged sum of all images.119 In another version of reference-
free alignment, a series of arbitrarily selected images are used in
turn as references to align all of the other images.120

If the signal is weak, or the reference image does not match the
data, noise can be correlated to the reference image during
alignment. Therefore, to avoid bias, it is important to start a new
analysis with reference-free alignment. The problem of reference
bias is illustrated by tests in which pure noise data sets are aligned
to a reference image.121,122 Because the correlation is sensitive to
the SNR in the image data, the accuracy of the correlation
measure can be improved by weighting the correlation of Fourier
components according to their SNR.122

Alignment of a single-particle data set is accomplished by a
series of comparisons in which alignment parameters are deter-
mined on the basis of correlations of each raw image with one or a
set of reference images. The major information for alignment

comes from the stronger, low-frequency components of the
images. Because of the low SNR in cryo-images, it is important
to maximize the contribution of the signal to the correlation
measurement by reducing noise. There are two ways to reduce
noise in the images. In real space, a mask around the particle
serves to exclude background regions outside the particle. In
reciprocal space, a band-pass filter can be applied to exclude low-
frequency components related to background variations over
distances greater than the maximum extent of the particle and
high-frequency components beyond the resolution of the anal-
ysis. In later iterations of alignment, it is useful to increase the
contribution of higher-frequency components.

In addition to their arbitrary positions and orientations in the
plane of the image projection, the particles may have different
out-of-plane orientations, which will give rise to different projec-
tions. To sort the images into groups with common orientations,
statistical analysis and classification are essential tools (see next
section) in “alignment by classification”.12 Initial class averages
selected from a first round of classification can serve as refer-
ences to bring similar images to the same in-plane position and

Figure 15. Alignment using translational and rotational cross correlations and autocorrelation. (a) Two images to be aligned, with the second shifted off
center. The right panel shows the cross-correlation function (CCF) of the second image with the first. The crosses indicate the image centers. The arrow
indicates the shift that must be applied to image 2 to bring it into alignment with image 1, according to the CCFmaximum. (b) Two images, related by a
25� rotation, shown in Cartesian (left) and polar coordinates (right). The curved arrow shows the rotation in the Cartesian coordinate view, and the
dashed line shows the corresponding shift of a feature in the polar coordinate representation. (c) Plot of the rotational correlation between the two
images in (b). The arrow shows the angular shift required to align image 2 to image 1. (d) Images and their corresponding autocorrelation functions
(ACF). When the image is shifted (second panel), the ACF is unchanged (translationally invariant). The reference image (ref) has 3-fold symmetry, but
its ACF is 6-fold because of the centrosymmetric property of ACFs. Rotation of the image causes the same rotation of the ACF, but has an ambiguity of
180�. A possible alignment strategy is to use the ACF first for rotational alignment, using the property of translational invariance. The CCF then can be
used for translational alignment, checking both 0� and 180� rotational positions.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-014.jpg&w=470&h=335
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orientation and to separate different out-of-plane views. A few
iterations of these alignment and classification steps provide good
averages representing the characteristic views in the data set.

Various protocols have been developed for translational and
rotational alignment of image data sets. Tests onmodel data suggest
that, after initial centering, iterations of rotational followed by trans-
lational alignment to the reference images are effective12,123,124

(Figure 15). The quality of the result also depends on the accuracy
of the interpolation procedures, because the digital images must be
rotated and shifted by non integral pixel values during alignment.125

The progress of an alignment can be evaluated by examining
the average and variance images (Figure 16). The average of an
aligned set of similar images should improve in contrast and
visible detail during refinement, and the variance should de-
crease. In addition, the cross-correlation (CC; maximum value of
the normalized CCF) between references and raw images should
increase during refinement.
4.2.1.MaximumLikelihoodMethods. For alignment of an

image data set to a set of references, each image is assigned the
alignment parameters of the single reference image with which it
has the highest CC. The maximum likelihood approach uses the
whole set of CC values between each image and all of the references
to define a probability distribution of orientation parameters for the
image being aligned.126,127 For clusters of references giving similar
CC values, this approach is likely to providemore reliable alignment
parameters than would be obtained just taking account of the
highest CC, but it is computationally very expensive.

4.3. Template Matching in 2D and 3D
So far, we have considered alignment of 2D images to refer-

ences, but there is also a need to detect known features (motifs)
in noisy and distorted image data in both 2D and 3D. In 2D,

motif detection is used for automated particle picking in raw
micrographs. In 3D, the task is to search for occurrences of
known molecular complexes in tomograms. These tasks repre-
sent 2D and 3D versions of a search for a known, or approxi-
mately known, structural motif in image data. In automated
particle picking from micrographs, individual particles with low
SNR are located by a cross-correlation search of the whole
micrograph with one or more template images, references
derived from the data, a model, or a related structure. In 3D, if
a known structural motif is expected to be present in the
reconstructed volume, the 3D map of that motif can be used to
search for occurrences of related features in the tomogram. The
main problem is reliable identification of motifs in noisy data. In
the case of template matching, a small region of the whole
micrograph or 3D structure is searched by cross-correlation with
the template. If the image or structure is normalized as a whole
(global normalization), the cross-correlation between the tem-
plate and each small, local region will be influenced by many
features outside the region of interest. On the other hand, if the
image or structure is normalized just in the local region at each
step of the search, the resulting correlation values will give more
reliable results reflecting the local match with the template.
A locally normalized correlation approachwasdevelopedbyRoseman
and is widely used.124,128,129

4.4. Alignment in Tomography
4.4.1. Alignment with and without Fiducial Markers.

The accuracy of tomographic reconstruction depends on the
alignment of successive tilt views. Alignment is done by tracking
the displacements of marker particles (fiducial markers) across
the image as a function of tilt angle. Dense particles such as
colloidal gold beads or quantum dots (semiconductor particles
that are both fluorescent and electron dense) are used for this
purpose. For plastic sections, these markers are applied to the
surfaces. With a good distribution of fiducial markers and a stable
specimen, it is possible to obtain accurate alignment and even to
correct for local distortions. Alignment can sometimes be
improved by restricting it to subregions of interest, which move
coherently through the tilt series.130

For cryo-tomography, fiducial markers can be mixed into cell
suspensions before freezing. Alternatively, a method for deposit-
ing fiducial markers onto sections at cryo-temperatures has been
published.131 In cryo-tomography, the requirement to limit the
total dose means that the SNR in each view is very low.132 In
addition, cumulative radiation damage and tilting change the
image from one view to the next. These problems reduce the
success rate of alignment, especially for vitreous sections.
With sufficient contrast of image features, markerless align-

ment can be used. A method has been developed in which a
large array of randomly chosen points is tracked by cross-
correlation.133 Because of the continually changing images, track-
ing is done through many overlapping short trails. The markers
are checked for consistency to search for useful ones.
4.4.2. Alignment of Subregions Extracted from Tomo-

grams. Tomographic reconstructions of irregular objects such
as subcellular regions often contain multiple copies of molecular
complexes. If these complexes can be recognized and extracted
from the tomogram, they can be aligned and classified as single
particles in 3D, giving substantial improvements in SNR. The
main difference with single-particle analysis in 2D is that the
tomogram has a wedge of missing data (section 3.4). For each
occurrence of the object, this wedge of missing data will be in a

Figure 16. Average and variance for an image set of particles whose
orientations are distributed by rotation around the symmetry axis (a,b)
and for an image set of particles in a single orientation (c,d). The average
in (a) contains images of particles in different orientations, resulting in
significant variation of image features (b). Panel (d) is featureless,
because all of the particles in the average (c) have the same orientation,
so that the projections only differ in the noise background. Figure
courtesy of Neil Ranson.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-015.jpg&w=204&h=220
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different direction, depending on the orientation of the object in
the original tomogram. To avoid bias to the orientation of the
missing wedge, each pairwise correlation must include only the
regions of Fourier space common to both images134 (Figure 17).
Subtomogram averaging has been used to study paracrystals of
filaments, viral particles, and their substructures such as surface
spikes.102,135

5. STATISTICAL ANALYSIS OF IMAGES

As discussed in section 4, the structural features of the object
of interest in an EM image are typically corrupted by noise result-
ing from counting noise in the number of electrons per image
element, sensitivity of individual channels in the image sensor,
radiation damage to the specimen, and fluctuations in local
concentrations of buffer chemical components. In addition, rapid
freezing can trap biological complexes in different structural
states that must be separated. How can a large image data set
be transformed into a systemwith fewer parameters that adequately
represents different projections of the same molecules as well as
their different biological states?

Assuming that the noise is not correlated to the structure, it
can be suppressed by averaging many images of the particles,
thereby enhancing the structural information. For averaging, it is
essential that the particle images are brought into register so that
similar features superimpose in their average. In general, the
alignment is an iterative process beginning with coarse features of
the data set, for example, center of mass of each particle image,
followed by grouping and averaging of individual images. Aver-
aging improves the SNR by a factor of

√
N, where N is the

number of averaged images. This in turn facilitates the determi-
nation of relative orientations of the different group averages
(“characteristic views”). Analysis of images followed by classifica-
tion into different groups (clusters) according to their features is
the basis of the statistical approach.136 Statistical analysis was

introduced into EM image analysis around 1980.137,138 Several
methods are used for analysis of variations, such as principal
component, multivariate, or covariance analysis. Classification
can done by hierarchical or K-means clustering.

5.1. Principal Component Analysis
Each image of I � J pixels can be represented as a vector in

(I� J)2 dimensional hyperspace with coordinates defined by the
density values of the image pixels. So a set of images can be
considered as set of vectors or, equivalently, as a cloud of points
(ends of the vectors) in the hyperspace (Figure 18).

Similar images will correspond to points that are close to each
other within the cloud. However, a pairwise comparison of all
images would be very slow because it requires pixel-by-pixel
evaluation of the differences for all possible shifts and rotations.
The essence of the statistical approach is to reduce the number of
variables describing the data set and to find a smaller set of
uncorrelated variables, called principal components. Multivariate
statistical analysis (MSA) identifies the largest variations in a big
data set and changes the coordinate system in the hyperspace
using thesemajor components as new axes. The axes are oriented
along the directions of these variations and are orthogonal (and
therefore uncorrelated) to each other. Principal component
analysis (PCA) uses the eigenvectors of the covariance matrix
(pairwise comparison of all images) as principal components
(for explanation, see ref 139). Typically, only a subset of new
coordinates is used with directions corresponding to largest
variations in the data set. In image analysis, eigenvectors are pre-
sented as eigenimages, which show the regions of major density
variations in the image data set. The smaller variations are usually
attributed to noise components of the data. The reduction of
dimensionality of the space leads to a compressed representation
of the data set without much loss of information. This compres-
sion is achieved by representing each image as a linear com-
bination of the principal components (see details in ref 140).

Figure 17. Diagrams of angular coverage and the corresponding images, to illustrate alignment of subtomograms taking account of the missing wedge.
(a) The original image with no missing data. (b) The effect of a missing wedge along the y axis on the image. Only projections within the gray sectorωi

are used to produce the image. Some features of the face (wrinkles and eyes) are not resolved. (c) Another set of projectionsωjwith themissing wedge in
a different orientation causes different features to be lost. (d) If only the data common to the two images (b) and (c) are present (Ωij), the image is more
distorted. Nevertheless, alignment of the two images (b and c) can be based on this overlapping information. Otherwise, the alignment would be biased
by the missing wedge. (e) After alignment, the two data sets (b) and (c) can be combined to give a better angular coverage, so that the reconstruction
more closely resembles the original object. Modified with permission from ref 134. Copyright 2008 Elsevier Inc.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-016.jpg&w=503&h=204
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Evaluation of the image similarities then can be carried out as a
comparison of vectors with a reduced number of components.

5.2. Hierarchical Clustering
The principal components of the data cloud can be used to

sort the images into groups by a clustering procedure. To decide
how to group the images (or elements of the data set), the
distance between them, or their similarity, must be estimated.
There are two main approaches for clustering that differ in their
starting point: In the agglomerative, or ascendant, hierarchical
classification, each point in the data hyperspace is initially
considered as a group (class) followed by merging the most
similar (closely spaced) points into the requested number of
clusters. The divisive approach initially places all of the data in
one cluster, which must be separated into smaller groups
according to their dissimilarity. Depending on the distance of
each data point from the existing clusters, that element will either
join the nearest cluster or form the seed of a new cluster.139

The principal difference between the currently used algo-
rithms is the definition of the distances between elements (metric)
in the hyperspace. The metrics typically used are Euclidian
distances, chi-square metrics (χ2), or modulation distances.139

The smaller is the distance between the points, the greater is the
correlation (similarity) between the corresponding images. The
simple Euclidean distance measure is sensitive to differences in
scaling (normalization) between the images. Thus, two images
with densities that are proportional to each other could incor-
rectly end up in different clusters using this metric. Therefore, the
χ2 measure incorporates normalization by the average of all
images, and the modulation measure scales the images by their
standard deviations, allowing for more robust classification
schemes.

The algorithm implemented in IMAGIC141 is based on mini-
mization of the intraclass variance in a cluster (between the
members of the cluster) and maximization of the interclass
variance between the centers of mass of the clusters.139,142 In
SPIDER, there are options to use either correspondence analysis
based on chi-square metrics (χ2), which requires all data to be
positive, or PCA, which does not have that requirement.124

5.3. K-MeansClustering and theMaximumLikelihoodMethod
K-means is a clustering (partition) method, which starts with a

predefined number (K) of points randomly selected from the
data as seeds. Each data point is assigned to a cluster nearest to

one of the K points, and the center of the created cluster is
redefined. As further points are added, the algorithm iteratively
reorganizes the clusters until the sum of intracluster distances is
minimized. The results of classification by K-means usually
depend on the initial center assignment. This approach works
best with a small number of clusters.

The maximum likelihood method can be used to cluster images
with lowSNR.127,128This approach is basedon randomselectionofK
subsets of the data from which seeds of clusters are created, followed
by the optimization of the clusters. Seed positions are reassessed
during formation of the clusters. The maximum likelihood method
along with K-means clustering has been implemented in Xmipp.118

The use of statistical analysis and classification of images is
important for discriminating variations from any source, differences
in defocus, different particle orientations that reflect different 2D
projections of a 3D structure, structural variations within an orienta-
tion group, and eventually conformational changes of the complexes.

6. ORIENTATION DETERMINATION

To calculate the 3D map from a set of projection views, the
relative orientations of the 2D projections must be determined.
There are two general approaches to this problem. An experi-
mentally based approach involves the collection of images of the
same particles at different tilt angles.144 This method is particu-
larly applicable for particles that adopt a preferred orientation on
the support grid. The other approach is computationally based, in
which untilted images are collected. For the second approach, it
is essential to collect a range of views distributed over different
orientations.145�147 The biggest challenge in orientation deter-
mination is to get the first set of assignments for a data set
corresponding to an unknown 3D structure, especially if it is
asymmetric. Once an initial model (starting model) is available,
the orientations can be refined. A significant problem in single-
particle analysis is that an incorrect starting model can bias the
result or even completely invalidate it, and there are examples in
the literature of dissimilar or completely different EM structures
for the same biological complex. In such cases, further informa-
tion is needed from biochemical, biophysical, or genetic experi-
ments to help validate the resulting structure.

6.1. Random Conical Tilt
Radermacher148,149 developed the method of random conical

tilt that provided the first reconstructions of macromolecular

Figure 18. Schematic of a data cloud illustrating the principles of multivariate statistical analysis and classification. (a) Each image is represented by a
color-coded dot in a multidimensional data cloud, which has been subjected to MSA. (b) The dots are sorted into three classes according to color and
position. Several outlying dots (represented by inconsistency between color and position) are not assigned to major classes and represent classes
composed only by one dot, and are not considered as representative classes.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-017.jpg&w=360&h=142
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assemblies without using symmetry (50S ribosome and RyR
channel.148�150 Images are taken in pairs, so that the same field of
particles is recorded first at high tilt (45�60�) and then untilted
(Figure 19). The image pairs are tracked by aligning the two
fields via recognizable point features. The method has mainly
been used with negative stain EM, because cryo-EM is more
difficult at high tilt angles. It is most straightforward if the
particles have a preferred orientation on the carbon support
film. In that case, all of the untilted images will be the same,
except for in-plane rotation, and the tilted images will correspond
to projections lying on a cone of orientations. The position on
the cone for each tilted view is determined by the in-plane
orientation (azimuthal angle) of the corresponding untilted view.
If the particles do not all have the same in-plane view, the untilted
images must first be sorted out into groups of similar views by
classification, so the tilted views can be grouped according to
their corresponding in-plane orientations. This information is
sufficient to define the orientations of the tilted particles, and a
first 3D map, or set of maps for different in-plane orientation
classes, can be calculated. In principle, the method is simple and
reliable, and indeed it is widely used for getting a starting model.

However, the conical tilt approach has some limitations. It is
technically difficult to get good quality images at high tilt, because
of specimen thickness and microscope stage stability, especially
for cryo-EM. The tilted images will have a gradient of defocus,
although with continuous carbon film it is possible to determine
the defocus and correct for it.149,151 A more difficult problem is
incomplete staining, in which particles are not fully embedded in
stain and the highest regions of the structure are missing from the
images. Partial staining can be avoided by placing the stained
particles between two carbon films, but this task is experimentally
more difficult, and very thin carbon films are needed to avoid
excessive loss of contrast. Current microscopes make it more
feasible to avoid these problems by using cryo-EM for conical tilt.
Finally, the limit onmaximum tilt angle imposed by the specimen
holder and thickness of the tilted specimen results in a missing
cone of data, limiting the resolution in z. This problem can be
rectified if there are different particle orientations in the untilted
image, so that different conical tilt reconstructions can bemerged
to compensate for missing cones.

The orthogonal tilt strategy provides an elegant approach to
3D reconstruction from tilted views.152 Unlike conical tilt, this
method requires well distributed out-of-plane orientations. Pairs
of images are collected at �45� and 45� tilts. Suppose there are
two particles with out-of-plane orientations 90� apart. If the

Figure 19. Conical tilt geometry. (a) The original object, with arrows indicating the angular directions of the data projections. (b) Representation of the
sections in Fourier space corresponding to data projections collected within this cone of angles. A central cross section of the planes in Fourier space is
shown in (c). (d) A surface view of the resulting conical tilt reconstruction, surrounded by the eight projections corresponding to the original view
directions. Reproduced with permission from ref 99. Copyright 1998 Elsevier Inc.

Figure 20. Relationships between images and projections in real and
Fourier space. The 3D structure can be projected onto planes to give 2D
projections, which can in turn be projected in different directions to yield
1D (line) projections, indicated by the operator of summation ∑. The
complete set of line projections is known as the Radon transform. A
sinogram is a set of line projections of the 2D projection or a section of
the 3D Radon transform. In the reverse direction, the set of line
projections can be combined to reconstruct the 2D image and the set
of 2D projections combined to reconstruct the 3D object, indicated by
the operator of stretching. The image information can be equivalently
represented in reciprocal space, in the form of Fourier amplitudes and
phases (right column). Fourier transforms (F) of the 2D projections
correspond to central sections of the 3D transform (extraction), and the
line projections correspond to lines passing through the origin of Fourier
space (central lines). Therefore, the object can also be reconstructed by
combining (filling) the set of central sections into the 3D transform
followed by inverse 3D Fourier transformation. Adapted with permis-
sion from ref 12. Copyright 2000 Cambridge University Press.
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rotation axes coincide, a�45� tilt of one particle will correspond
to a +45� tilt of the other. The problem is to find equivalent views
in tilt images arising from particles that are orthogonal at 0� tilt.
Combining such tilt views from particles with different in-plane
orientations will generate a tomographic series around the common
axis and can be used to generate a 3D reconstruction with no
missing cone (see Figure 1 of Leschziner and Nogales152).

6.2. Angle Assignment by Common Lines in Reciprocal Space
For any set of 2D projections of a given 3D structure, there

are relationships between the projections that can be used to
determine their relative orientations (Figure 20). Each pair
of 2D projections has at least one 1D (line) projection in
common.153,154 In Fourier space, 2D projections correspond to
planes passing through the origin of Fourier space, and 1D line
projections become radial lines in the transform.The common line
between two projections in Fourier space is the line of intersection
of the corresponding two planes in Fourier space (Figure 21).

With only two images, the angle between the two intersecting
planes cannot be determined because only one common line

exists, but with three images there are three common lines, and
angles between any two common lines can be found with respect
to the third one, so that all of the orientations are fixed.
Determination of common lines from individual raw images is
difficult, but the presence of symmetry provides many more
constraints and results in multiple common lines, both from the
same image (self-common lines) and between image pairs (cross
common lines). Icosahedral viruses provide the most favorable
case, and Crowther145 developed the application of common
lines for determining the relative orientations of virus particles in
Fourier space. Using their icosahedral symmetry, he was able to
find the common lines and to determine the particle orientations.
Because the searching is done in reciprocal space, the radial lines
of the image transforms are compared and the common lines
identified by minimizing the sum of phase residuals between
pairs of common lines. Fuller155 introduced a weighting scheme
to make the common lines method more effective for use with
cryo EM images of icosahedral particles. The phase residual
comparison depends on particle orientation: the common lines
are less well separated in views around the symmetry axes, and

Figure 21. Surface rendered views, projections, and transform sections of a structure, with a common line intersection illustrated in reciprocal space.
The structure has rotational symmetry, and there are several symmetry-related common lines. From the angles between common line projections of
different views, the relative Euler-angle orientations of a set of projections can be determined. Adapted with permission from ref 24. Copyright 2000
International Union of Crystallography.
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fewer independent values of the transform are compared. At low
SNR, this difference in the number of comparisons means that
the probability of finding views near symmetry axes must be
downweighted.156

6.3. Common Lines in Real Space
The Radon transform (discussed in section 7) is the set of all

1D (line) projections of an N-dimensional function. This con-
cept is useful in considering the relationships between a 3D
object and its projections. In particular, a 2D section of the Radon
transform of a 3D function corresponds to the set of 1D
projections of the 2D projection. On the basis of this concept,
a common lines approach in real space for arbitrary symmetry
was developed by van Heel and colleagues and implemented in
IMAGIC.12,154,157,158 For each 2D image, a set of 1D projections
is calculated and presented as an image (sinogram) whose lines
are formed of the series of 1D projections from 0� to 360�. It is
important to note that centering of images is essential for angle
assignment by common lines, because shifting the 2D image
shifts the 1D projections. In the search for common lines in
Fourier space, the images are centered by the phase minimization
procedure, because the common lines must be centrosymmetric.

The task is to find the best matching lines for each pair of
images being compared, by cross correlation between their
sinograms (Figure 22). Especially with low symmetry structures,
the low SNRmakes this comparison very difficult with sinograms
obtained directly from the raw images. An important innovation
making it possible to work with lower symmetries was use of class
averages (see section 5) rather than individual raw images for the
common lines search. It is advisible tomake several trials to get an
initial 3D reconstruction by angular reconstitution and to check
the consistency of the results, especially with asymmetric struc-
tures. Once a consistent initial 3D map has been obtained, the

structure can be refined by further cycles of alignment, classifica-
tion, and common line searching.

6.4. Projection Matching
The procedure of projection matching is much easier to

understand in principle, but it needs an initial model. Once a
3D structure is available, even at very low resolution, it can be
used to generate reprojections at all possible orientations. The set
of reprojections can then serve as reference images, in a
systematic comparison of each image in the data set (or set of
class averages) with all of the reference images (Figure 23).159 In
projection matching, for each image in turn, the Euler angles of
the reference image that gives the best cross correlation are
assigned to the raw image or class average. For each comparison,
all possible in-plane alignments must be tested, so that this is a
very lengthy calculation. Once the Euler angles are assigned, a
new 3D map can be calculated and the procedure iterated with
the new set of reprojections (Figure 23). Real-space projec-
tion matching is implemented in EMAN,116 IMAGIC,141 and
SPIDER.117 The program FREALIGN does the projection
matching search in reciprocal space, giving some advantages
in speed and providing an option for refining defocus of each
particle.160 Another projection matching method, PFT (polar
Fourier transforms), was developed by Baker and colleagues for
refinement of icosahedral structures146,161 (Baker and Cheng,
1996, Sinkovits and Baker, 2009). An alternative approach uses
wavelet expansions to compare images and reprojections, de-
monstrating improvements in speed and robustness to noise.162

6.5. Molecular Replacement
As in protein crystallography, it is usually much quicker and

easier to determine a structure if a sufficiently similar starting
model is already available. In many cases, the objective is to

Figure 22. Sinograms and sinogram correlation functions for a model structure. Three projections (numbered 1�3) are shown of a model composed
of three Gaussian dots with different densities. S1, S2, and S3 are sinograms or sets of 1D projections of the corresponding 2D projections. CSC12
and CSC32 represent cross-sinogram correlation functions between projections 1 and 2 and projections 3 and 2, respectively. Each point of the
sinogram correlation function contains the correlation coefficient of a pair of lines from the two sinograms. Solid lines indicate the common lines
between projections 2 and 1, while the dashed lines indicate the common lines between projections 2 and 3. Each CSC has two peaks because
projections from 180� to 360� mirror those from 0� to 180�. The angular distance between the common lines (solid and dashed) gives the angle
between projections 1 and 3.
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determine the structure of a complex with a ligand or with
localized conformational changes. If the structure of the initial
complex is known, it can be used to generate reprojections that
can be used for projection matching or common lines search in
real or reciprocal space. The resulting new model can be used for
subsequent refinement. The initial result of projection matching
usually resembles the starting model, but after a few rounds of
refinement the new features of the data set should become
stronger. However, if the relationship between model structure
and data is not well established, the possibility of reference bias
needs to be carefully checked.

Conversely, EM maps can be used as molecular replacement
models to phase X-ray structures.163�165 For this approach, there
must be overlap in resolution ranges between the EM and X-ray
data. So far, phasing from EM has mainly been used with large
complexes or viruses for which it is difficult to obtain heavy-metal
derivatives.

7. 3D RECONSTRUCTION

In EM, we are dealing with 2D images that can be considered
as 2D projections of the 3D electron potential of the specimen,
after restoration of the image information byCTF correction. Several
alternative approaches have been developed for reconstruction of a
3D object from its projections.166 These methods fall into twomajor
groups. Methods that perform the reconstruction in real space
include back-projection and algebraic methods. In the other group,
the reconstruction is done in Fourier space. The current trend is
toward automation of all of the image processing steps, from particle
picking to 3D reconstruction.167 For icosahedral particles, which are

easier to process because of their shape and their high symmetry, the
reconstruction steps are more readily automated.168,169

7.1. Real-Space Methods
The Austrian mathematician Johann Radon demonstrated in

1917 that an N-dimensional function can be restored from its
integrals over the continuum of straight lines, which represent its
one-dimensional projections.153 The continuous set of line
projections is known as the Radon transform of the N-dimen-
sional function. 2D sections of Radon transforms (sinograms)
are used in orientation determination (see section 5). The
inverse of the complete (N-dimensional) Radon transform
defines the distribution of densities of the object. However, there
are difficulties in numerical implementation of the inverse Radon
transform for structural analysis, and several other implementa-
tions are used to approximate this transform.
7.1.1. Back Projection. The digital projection Pl

α at angle α
of a two-dimensional function is the sum of densities along one
pixel wide parallel rays (Figure 24a):

Pαl ¼ Pðlk,αÞ ¼ ∑
K

k¼ 1
Fð rBi, jÞδðlk � LB 3 rBi, jÞ ð20Þ

where i and j are the object pixel indices, k is the projection pixel
index, and δ(1k � LB 3 rBi,j) is a line (or plane) over which the
summation is performed, LB is a unit vector that defines the
projection direction at angle α, and lk is the projection coordi-
nate. Back-projection works by stretching the projection back
over the volume (array) to be reconstructed along the projection
direction. Pixels of a projection being stretched form lines that

Figure 23. Projection matching procedure. A set of images is compared to a set of references from an initial model (low resolution). Once the best
match is found between the image and one of the references (reprojections), based on the height of the correlation peak, the shift relative to thematching
reference and angles of that reference are assigned to the image. Images 1 and 6 have the best correlation with model projection a (red arrows), while
images 2 and 5 match image e (blue arrows). Image 3 corresponds to the tilted view c (yellow arrow). A new 3Dmap is calculated using images with the
assigned angles. The refined 3D reconstruction is then reprojected with a smaller angular increment to generate new references for the next iteration of
refinement.
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are called ray sums (RS). An estimate of the density in a given
pixel of the reconstruction with coordinates i,j is the sum of all
RSs that pass through that pixel (Figure 24b). However, this
simple technique does not accurately reconstruct the original
object; details are smeared over some distance or surrounded by
a halo (Figure 24C and D). These distortions arise because the
reconstruction is convoluted with a broad PSF, which has a falloff
of 1/r in 2D and 1/r2 in 3D space:

Frecð rBÞ ¼ Forigð rBÞ X
1
r

in 2D space ð21aÞ

Frecð rBÞ ¼ Forigð rBÞ X
1
r2

in 3D space ð21bÞ

or where X is the convolution operator and rB is the real space
vector.124,170

7.1.2. Filtered Back-Projection or Convolution Methods.
Filtered back-projection is a modified version of the back-
projection algorithm, which corrects for the blurring introduced
by the PSF function mentioned in section 7.1.1 (Figure 25). The
operation can be performed in either real or Fourier space. In
Fourier space, the correction is achieved by applying a filter
corresponding to the inverse of the PSF. For 1/r, this function is
proportional to the spatial frequency and is called a ramp filter.
A variety of filters can be used in real space. One type of filter

used for correcting back projection is the Laplace operator, which
is applied to the projections for prefiltering. These reconstruction
algorithms are based on functions that approximate the inverse
Radon transform; they perform back-projection reconstruction
on the preprocessed projections.171�173 The preprocessing
modifies the projections using window (apodizing) functions
(Hamming window), which are equal to zero outside a chosen
distance interval and enhance the signal within the interval.170 In

some packages, the filtering is performed in 3D space on the
reconstruction obtained by back-projection.
Filter characteristics in addition to the 1/r term depend on

the distribution of projections and their noise level, as well as
the symmetry of the object.149,174,175 Most published filter
functions have been derived analytically from theoretical
considerations.170,173

7.1.3. Algebraic Methods. The development of algebraic
methods has been stimulated by medical tomography. In this
case, reconstruction of the 3D object is based on determination
of successive planar slices of the object (patient), so that the
problem is reduced to a set of 2D reconstructions from 1D
projections. We will explain the methods in 2D space, because
the concept of reconstruction can be easily extended to 3D space.
This technique requires that the object is described by a

positive function over a finite region (the object is of limited
size) and can be represented as a digital I � J array of densities.
An element of the array with coordinates i, j is the pixel Fi,j. The
projection Pl

α is defined as in eq 20:

Pαl ¼ ∑
l

i, j ∈ rayðl ,αÞ
Fi, j ð22Þ

where i = 1, 2, ..., I; j = 1, 2, ..., J; l = 1, 2, ..., L.
Equation 22 is linear, with I unknowns. For M projections,

there will be L�M linear equations. Solution of the complete set
of equations would give the reconstruction of the object. The
problem arises from the fact that a number of unknowns I � J
(the size of the array {F(rBi,j)}) can be larger than number of
equations in the set (L 3M), and that the number of unknowns
increases dramatically with image dimensions. If L �M < I � J,
the set of equations can have more than one solution. Moreover,
in reality, projections may not be consistent with each other
because of noise. Even for an image of 50� 50 pixels, the number

Figure 24. Back-projection algorithm. (a) Projections Pl
α1, Pl

α2, and Pl
α3 are obtained experimentally from an object containing two dots of different

density. α1, α2, and α3 are the angles of the different projection directions, and Lα1, Lα2, and Lα3 are the unit vectors of the corresponding projection
directions (eq 20). (b) Back projection is done by stretching projections back through the area to be reconstructed along the original projection
directions, or in other words by creating rays of pixels with the density of the corresponding projection pixel. This is shown as light and dark gray lines
from projections 1, 2, and 3. The rays are summed in the reconstructed area, providing information on the dot positions. (c) The more projections that
are used, the better defined are the dots. (d) An artifact of the technique is that each point is surrounded by a background halo. The intensity of the halo is
proportional to the density of the dot.
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of variables to be determined is 2500 in the 2D case and grows to
625 000 in 3D space. In practice, the images are bigger than this,
so that direct solution of the equation set becomes unfeasible.
Therefore, alternative approaches are needed, based on reason-
able approximation of the object rather than on exact solution.
In algebraic techniques, the value of Fi,j can be estimated as the

sum of all RSs from M projections Plαm that intersect at the point
(i,j), multiplied by a weighting factor, where each RS is one pixel
wide.

Fi, j ¼ ∑
M

m¼ 1
RSml 3W

m
i, j ð23Þ

where RSl passes through (i,j)th pixel. The weight factor Wi,j
m

represents the contribution of the (i,j)th pixel to the l th RS. The
whole problem can be described as minimization of the differ-
ences between original (measured) and calculated projections:

ðPαm
l, calculated � Pαm

l, measuredÞ ð24Þ
Various algebraic techniques use different criteria to estimate
these errors and to apply corrections. They can be subdivided
into four groups: ART, algebraic reconstruction technique;176

SIRT,177 simultaneous iterative reconstruction technique; SART,
simultaneous algebraic reconstruction technique;177 and RMLE,
relaxation methods for linear equations.170,178,179

7.1.3.1. Algebraic Reconstruction Technique. In ART, the
initial array (the first approximation) is blank: Fi,j = 0, and eq 24 is
solved iteratively:

Rk þ 1 ¼ max½ðRk þ ðPαm
measured � Pαm

calculatedÞ 3WÞ, 0� ð25Þ
whereRk denotes the kth approximation (Rk=0 = 0);Pmeasuredαm is
the measured mth projection, and Pcalculatedαm is the calculated

projection in the same direction; and W is the weight matrix.
Corrections are made after adding each successive projection.180

This is a simple method, but the result depends on the starting
projection. The process may become unstable because of ampli-
fication of inconsistencies in noisy projections. Different imple-
mentations of ART vary in weighting matrix specification and
using additional constraints such as density thresholding and
zero density outside of the object. There is a version of multi-
plicative ART in which the initial approximation is defined as
Rk=0 = Fi,j = 1, and

Rk þ 1 ¼ W 3 ðPαm
measured=P

αm
calculatedÞ 3Rk ð26Þ

7.1.3.2. Simultaneous Iterative Reconstruction. As in addi-
tive ART, one can start with a blank (zero) reconstruction, or with
Rk=0 = 1 if themultiplicative correction approach is used. Themain
distinction between ART and SIRT techniques is in how the
reconstruction correction is performed in an iteration step: in
ART, differences between the currently used projection and
corresponding reprojection are calculated, and the current recon-
struction Rk (calculated on the basis of the limited set of projec-
tions used so far) is immediately modified; in SIRT, all projections
are used to create the current reconstruction Rk before calculating
reprojections and corresponding differences are used to calculate
an overall corrective matrix for the next iteration:

Rk þ 1

¼ max½ðRk þ ðA 3∑Pαm
measured � B 3∑Pαm

calculatedÞ 3WÞ, 0� ð27Þ
where A and B are weighting parameters.181 Results of SIRT do
not depend on the starting projection. Although SIRT converges
more slowly than ART, it produces better results.182

Figure 25. Filtered back projection. The original object contains two dots of different densities. The upper panel represents reconstructions by back
projection of these dots using 7, 15, 45, and 180 projections, respectively. Although the radial streaks are eliminated by using more projections, this
method leaves a halo around the reconstructed dots. The bottom panels show reconstructions from the same projections using filtering. Reduction of the
halo is most pronounced on the reconstructions with more projections.
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7.1.3.3. Simultaneous Algebraic Reconstruction. This ap-
proach combines the best features of ART and SIRT. The
technique, introduced by Andersen and Kak,183 uses bilinear
interpolation for the reconstruction and projection steps and
restricts the area of reconstruction to a circle (sphere in 3D). This
restriction simplifies the weighting scheme of projections: partial
weights are assigned only to the individual RS points that
intersect with the circle covering the area of reconstruction;
inside the circle, the RSs are used with full weight, while weights
are set to zero outside of that area. To further reduce the noise
resulting from unavoidable inconsistencies with real projection
data, the correction terms are simultaneously applied for all of the
rays in one projection as in SIRT. In SART, reconstructions are
obtained by bilinear interpolation.

Rk þ 1 ¼ max Rk þ
∑
i
W 3 ðPαm

measured �W 3P
αm
calculatedÞ��W��

0
B@

1
CA, 0

2
64

3
75

ð28Þ
Another implementation of the algebraic technique is RMLE, or
relaxation methods for linear equations. This method applies
additional constraints depending on the object data types and
uses any a priori information on the object, such as positive
density in the object, density thresholds, and location of the
object. Such additional constraints improve the convergence of
iterative approaches (see details in ref 170).

7.2. Fourier Methods
7.2.1. Fourier Inversion. Intuitively, Fourier methods are

very close to X-ray or electron crystallography, where data are
collected to fill Fourier space so that the inverse Fourier trans-
form generates the 3D map of the object in real space.184,185 In
single-particle analysis, the inverse Fourier approach is based on
the theorem that a projection of an object corresponds to the
central section of the FT of that object (central section theorem,
Figure 21). FTs of particle images yield a set of central sections in

the corresponding directions. These sections are part of the 3D
object FT, but the information is incomplete and must be rebuilt
by interpolation between the sections. The inverse transform will
then reproduce the electron density distribution of the object.
Symmetry of the object allows for better andmore even sampling
of the object FT with fewer images. Inverse Fourier techniques
were the first methods used for 3D reconstruction.186�188

7.2.2. Fourier�Bessel Reconstruction.Amodified version
of the inverse Fourier approach has been extensively used in the
analysis of complexes with helical or icosahedral symmetry. The
advantage of helical or icosahedral particles is in their high
symmetry, which means that each image is equivalent to many
symmetry-related projections. The number of related projections
depends on the symmetry of the complex. Thus, one image of an
icosahedral structure corresponds to 59 other symmetry-related
views, while for helical symmetry the number of equivalent views
is defined by the number of particles per helical repeat and the
length of the helix. In the ideal situation, a single image of a helix
provides sufficient views of the asymmetric unit to obtain a 3D
reconstruction.145,189,190

If themolecular complex has rotational or helical symmetry, its
density distribution is conveniently described in cylindrical polar
coordinates. In this case, the Fourier transform of the object can
be expressed as a Fourier�Bessel transform. The advantage of
using polar coordinates in Fourier space (Bessel functions) is that
the dimensionality of the transform can be reduced to a set of
Z-planes (normal to the helical axis) each containing concentric
rings of different radii, thus reducing the interpolation to just one
dimension (Figure 26a and b; for details see ref 145). EM images
of helical structures provide only restricted sampling of the
amplitudes and phases along these rings because of the limited
number of projections, and helical symmetry is used to determine
cylindrical functions Gn that define 3D FT of the complex. Once
the 3D FT is filled, the inverse can be computed to obtain the 3D
reconstruction of the complex.145

Helical bacteriophage tails were the first structures to be
reconstructed in 3D from EM images.187 The methods remain

Figure 26. Fourier Bessel reconstruction. (a) A helical structure with a sinusoidal density profile of pitch P. (b) The Fourier transform of the helix (a)
constitutes two planes on which the amplitudes are represented as concentric rings with phases alternating between 0� and 180�. The amplitudes of the
rings are described by Bessel functions. (c) Reconstruction of a microtubule complexed with the kinesin-5 motor at a resolution 9 Å. Enlargement of the
boxed area shows the fit of the X-ray structure into the EM map. Parts (a) and (b) are based on earlier figures by Moody.19 Part (c) is reproduced with
permission from ref 197. Copyright 2010 Elsevier Inc.
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important due to the large number of helical polymers found in
biology. Unfortunately, in reality most helical assemblies are
flexible and distorted, which restricts the application of Fourier�
Bessel methods. Early approaches to overcome this problem
involved the straightening of bent helices,191�193 but a more
effective solution was subsequently suggested using the single-
particle approach. The image of the helical object is divided
into short, overlapping segments, which are aligned as separate
images relative to reference projections calculated from amodel, fol-
lowed by reconstruction. In an approach developed by Egelman,194

the helical parameters and the quality of the reconstruction are
assessed by minimization of differences between symmetry-
related elements in the reconstruction. The density differences
are assessed for a range of axial rise and azimuthal rotation values.
The best parameters are used to create a model for further
iterations of projection matching. In addition to local disorder,
some helical structures such as microtubules have a break (seam)
in the packing of their constituent protofilaments, leading to
breakdown in helical symmetry. Ruby-Helix software developed
by Kikkawa enables the analysis of such asymmetric helices by
assessment of distortions in the diffraction phases caused by the
seam195�197 (Figure 26c). Successful application of the new
methods in studies of helical viruses, actin filaments, pili, and
other biological polymers revealed a variety of possible distor-
tions present in these structures, highlighting the need for further
development of the techniques to improve the resolution.

7.3. Distribution of Projections
The quality of the reconstruction depends not only on the

image quality and implementation of the algorithms, but also on
the angular distribution of projections. In principle, reconstruc-
tion methods assume that there are an infinite number of
projections that are evenly distributed around the Euler sphere.
The Euler sphere is an imaginary sphere whose origin is at the
center of mass of the object. The intersection of a projection
direction with the sphere defines a point on its surface that
denotes the projection orientation (Figure 27a). The distribution
of these points demonstrates the distribution in angular space of
projections of the object under study (Figure 27b). Orlov174

demonstrated that a reconstruction of an object can be obtained
with isotropic resolution if the set of projections is distributed

along any curve connecting opposite poles of the Euler sphere.
Nonetheless, this condition assumes an infinite number of
projections along such curves. Unfortunately, even under cryo
conditions, biomolecular complexes often display preferred
orientations, so that the projections are unevenly distributed in
space and the condition required for complete reconstruction is
not satisfied. In this case, the resolution becomes anisotropic due
to the absence of information in certain directions. Examples are
complexes with strongly charged or hydrophobic surface regions
that adsorb to the air�water interface, or flat complexes adsorbed
to a support film, resulting in preferred orientation in cryo-EM.99

7.4. Electron Crystallography
Important work in the development of high-resolution EM of

biological samples used electron crystallography of 2D crystals.198

This method was pioneered by Unwin and Henderson55 in the
first direct demonstration of α-helical densities in a membrane
protein. The structure of bacteriorhodopsin was subsequently
determined by electron crystallography to 3.5 Å199 and then 3 Å
resolution.200 These results stimulated the development of
molecular structure determination methods in EM.201 The basic
idea of electron crystallography is very similar to X-ray crystal-
lography but has the advantages that the phases are determined
from the images of crystals and that lattice distortions can be
corrected in the images. Because the crystal lattice has only one
or two layers, its scattering is continuous along the direction per-
pendicular to the crystal plane. Therefore, the diffraction spots
are extended into lattice lines. Either images or electron diffrac-
tion patterns can be collected from 2D crystals. To fill in the 3D
information, the lattice lines are sampled at different heights
by collecting data at different tilt angles55,202 (Figure 28).
The electron diffraction pattern intensities are not affected by the
CTF of the microscope, but CTF-corrected images provide the
phases of the reflections.

Typically both electron diffraction patterns and images from
2D crystals are collected from crystals tilted relative to the
incident electron beam. However, the EM grid cannot be tilted
more than∼70� because the bars of the support grid obstruct the
beam and also because the sample becomes too thick along the
beam direction. Restriction to (70� means that information is
missing along the z-axis, normal to the plane of the crystal. This

Figure 27. Euler sphere and distribution of projections. (a) The Euler sphere is an imaginary sphere of unit radius with the object located at its center.
The points on its surface represent view directions of the object. A projection direction is shown by the vector from the center to the viewpoint on the
sphere surface, so the angles of the projection are described by the vector direction. In this figure, the angle convention is as in IMAGIC α, β, and γ,
corresponding to SPIDER anglesψ, θ, andj, withψ = 90��α; θ = β;j = γ� 90�. (b) An example of the angle distribution of a single-particle data set
on the Euler sphere shown in elliptical (Mollweide) projection. This representation shows the angle of projection directions relative to the z axis (β
angle) and around it (γ angle), but the rotation in the image plane is not shown. These figures are normally used to examine the angular distribution of
images used for reconstruction, to assess the uniformity of spatial coverage in the data set.
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“missing wedge” of information results in an anisotropic PSF that
is elongated in the z direction. The resulting 3D density map is
distorted by convolution of the original structure with the PSF. If
the tilt data are collected from crystals in arbitrary orientations on
the grid, the missing wedge is reduced to a missing cone. The
influence of the anisotropic PSF (missing cone) depends on the
individual structural features and orientation of the protein in the
crystal. In bacteriorhodopsin199 and most other α-helical mem-
brane proteins, the helices are mainly parallel to the z (vertical)
axis, so they are not greatly distorted by the PSF. However,
structural elements with orientations parallel to the plane of the
crystal will be more poorly resolved.

There are some problems in common with X-ray crystal-
lography, notably that crystal disorder reduces the resolution of
the electron density map. Because the crystals are two-dimen-
sional, they are easily bent and distorted during EM specimen
preparation. Small distortions can be computationally corrected
by “unbending” based on the correlation map between a small
crystalline patch and the whole crystal. Deviations of the corre-
lation peak positions from those of a perfect crystallographic
lattice show how the unit cells must be moved back to recreate
the perfect lattice. The FT of the corrected lattice provides better
defined reflections with more accurate phases.

Combination of reflection amplitudes from electron diffrac-
tion and phases from the images permits restoration of the FT of
the crystal in 3D. The inverse FT generates the 3D structure of
the unit cell. The technique is benefiting from software devel-
opment and automated data collection.203,204 One of the best
results obtained by electron diffraction of a biological specimen is
the 1.9 Å resolution structure of lens-specific aquaporin-0
(AQP0), a water channel forming junctions between lens fiber
cells.58 The structure reveals details of the distribution of lipids
around the aquaporin tetramers.

7.5. Tomographic Reconstruction
Electron tomography is used for 3D analysis of individual, large

structures such as single cells or their components.7,20 The
principle is the same as in medical tomography, in which the
sections of a patient’s body are reconstructed slice by slice from
images collected at different angles. Accordingly, the word
“tomography” originates from two Greek words: “tomos” mean-
ing “to slice”, and “graph”meaning “image”. Electron tomography

also has some features in common with electron crystallography,
in which the samples are tilted around axes perpendicular to the
electron beam. For specimens with the typical slab geometry, the
longer path length of the beam through the sample at high tilt and
technical constraints in tilting range of specimen holders imposes a
limitation onmaximum tilt angle, so that part of space is not sampled.
Consequently, there is a “missing wedge” in the data. This wedge
(or pyramid for dual-tilt tomography) results in worse resolution in
the “vertical” (incident electron beam) direction (Figure 17).

The resolution achievable in cryo-tomographic reconstruction is
limited by radiation damage. The total dose is the main factor
defining the quality of the reconstruction, but the dose per image in
a tilt series must be sufficiently high to allow accurate align-
ment of images in the series.52,205 Another limitation in electron
tomography is the deterioration of image quality at high tilt, due to
the increased electron path lengthmentioned above. This increases
electron scattering by the sample, in particular inelastic scattering,
which reduces image intensity and contrast. Longer exposure times
can compensate for lower contrast at high tilt, but this increases the
dose per image and consequently the radiation damage.52

Although there are several programs for automated tilt series
data collection, the raw images collected are not perfectly aligned
relative to each other. Therefore, as in single-particle image
processing, these images must be accurately aligned before
proceeding to 3D reconstruction. Image alignment in tomogra-
phy is performed in real space using cross-correlation and fiducial
markers.6,105 Projection matching can be used for refinement.102

The images are usually aligned starting from low tilt angles, and
the alignment progressively includes higher tilts. Because EM
images correspond essentially to 2D projections of the object
along the electron beam, the images collected from the same area
at different tilt angles correspond to the set of object projections
at different but known orientations. Once the images are aligned
within a tilt series, a 3D reconstruction of the object can be readily
obtained using back projection or algebraic techniques.6,7,102

Recent developments have extended the applicability of cryo-
electron tomography and have led to improvements in data
processing. In addition to large, irregular assemblies such as
Herpes simplex virus and subcellular organelles, cell and tissue
sections can be imaged in the vitreous state (see section 2.1.3). If
multiple copies of a structure are present in the reconstructed

Figure 28. Electron crystallography. (a) Schematic diagram of lattice lines from a 2D crystal and their intersection with a tilted plane of data. Adapted
from ref 198. Copyright 1982 Pergamon Press. (b) 3D electron diffraction pattern of a tubulin crystal. Plane A shows the untilted electron diffraction
pattern, and planes B and C restore the lattice lines from the tilt series. The missing wedge can be seen on plane C (dashed lines). Unit vectors h and k
indicate the position of the origin. Part (b) is reproduced with permission from ref 202. Copyright 2010 Elsevier Inc.
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volume, subtomogram averaging (described in section 4.4.2) can
be used to improve SNR and, if the structure is present in
different orientations, to fill in the missing wedge, thus improving
the resolution of the averaged volumes.

CTF correction is difficult in tomograms, because the very low
dose in each tilt view does not give sufficient signal to measure
the Thon rings, and also because the defocus varies across tilted
images. Nevertheless, several approaches have been developed, such
as correcting in bands parallel to the tilt axis, where the width of the
band decreases with increasing tilt angle,102,151,206,207 and two
approaches have been compared for estimating the defocus in a tilt
series: correcting by the average defocus of the whole tilt series, or
determining defocus from the very small changes in magnification
caused by changes in defocus.

8. EVALUATION OF RECONSTRUCTION QUALITY AND
RELIABILITY

It is not straightforward to verify that a single-particle recon-
struction is correct and then to evaluate its resolution. There are
examples in the literature of different maps of the same object.
The match between input images and reprojections is necessary
but not sufficient to ensure that the map is correct. It is also
essential that the class members resemble the class averages and
that the characteristic views are recognizable in the raw data.
Note that resolution can be very anisotropic, especially with tilt
data, and that it can vary between different regions of a structure.
For example, rigid regions will be more accurately represented
than flexible ones, and peripheral regions will be more affected by
orientation errors than central ones.

To evaluate map reliability, an approach somewhat equivalent
to the free R factor in crystallography has been proposed. The
idea is to collect some tilt pairs, with relatively low tilt (10�30�),
and to determine the particle orientations by projection match-
ing to the final map.208 This procedure provides a check on the
consistency of the map with independent data, and allows for
hand determination, but can be very difficult at low resolution if
the structure does not have strongly asymmetric features.

The point-to-point resolution of an image is defined by the mini-
mumdistance between two distinguishable densitymaxima.However,
the accuracy of locating the center of mass of a density maximum is
3�5 times better than the point to point resolution (Figure 29). If the
map shows features of secondary structure, its correctness can be
verified by fitting of components with known atomic structures.

8.1. Causes of Resolution Loss
Structure information can be lost or distorted at all stages of

the data collection and analysis, depending on instrumentation,

experimental, and computational skills. Poor electron optical
alignment, drift, detector noise, magnification variations,
inaccurate defocus determination, errors in alignment, sam-
ple heterogeneity, flexibility, incomplete angular coverage,
and radiation damage can all combine to give dramatic falloff
of the high-resolution information.10,208,209 Inaccuracy of
alignment leads to the blurring of each point in the image,
which can be described by as a point spread function (PSF)
with a Gaussian distribution. Better alignment leads to a
sharper PSF. Conversely, a broad PSF leads to errors in
determination of angular orientations and slows the refine-
ment procedure, increasing the number of iterations in the
alignment�reconstruction loop.

8.2. Resolution Measures
The measurement of resolution should quantify the level of

reliable detail detectable in the final map. In practice, the
detectability of features at a given resolution is determined by
the SNR in that frequency range of the data. To quantify
resolution, the SNR must be estimated as a function of spatial
frequency.With crystallographic data, the signal is concentrated
in diffraction peaks, whereas the noise is distributed continu-
ously over reciprocal space. Therefore, the SNR in any given
frequency range is readily estimated by comparing the diffrac-
tion peak to the surrounding region, and the resolution is
determined by the spatial frequency of the highest resolution
diffraction peaks clearly detectable (typically 3� higher) over
background noise.

In single-particle and tomography data, both signal and noise
are distributed over the whole spectrum, and there is no simple
way to estimate the resolution. The most widely used method for
determining the resolution of a single-particle reconstruction is
Fourier ring (in 2D) or Fourier shell correlation (FSC).210,211

The data set is split into two equivalent halves, usually by
separating odd- and even-numbered images from the data stack.
Separate reconstructions are calculated from the two halves, and
their 3D FTs (F1, F2) are compared by cross-correlation in spatial
frequency shells (k,Δk). The average correlation for each shell is
plotted and typically shows a falloff from a correlation of 1 at low
resolution down to 0 at high resolution.

FSC ¼
∑
k,Δk

F1ðkÞF2�ðkÞ

j ∑
k,Δk

jF1ðkÞj2 ∑
k,Δk

jF2ðkÞj2j1=2
ð29Þ

The spatial frequency at 0.5 correlation is commonly taken as the
resolution estimate, but other criteria, for example, comparison

Figure 29. Resolution definition by separation of features. (a) When two points are far apart, there is a deep trough of density between them. (b) Two
points are regarded as just resolved when the peak of one point spread function overlaps the first minimum of the other (Rayleigh criterion), see ref 60.
(c) The point spread functions of two dots close together overlap to form one maximum, so that the points are not resolved.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100353t&iName=master.img-028.jpg&w=360&h=104


7740 dx.doi.org/10.1021/cr100353t |Chem. Rev. 2011, 111, 7710–7748

Chemical Reviews REVIEW

to the noise level, or 0.143 have been proposed on the basis of
SNR estimates.208,211 Systematic errors that affect both halves of
the data set equally will not be detected in the FSC, which will
therefore be overoptimistic. If a sharp-edged mask is used around
the maps, or if noise becomes correlated with the signal during
refinement,122 spurious high-resolution correlation can be gen-
erated, so that the correlation falls to a minimum and then rises
again at high resolution, reflecting good correlation between the
masks applied to the reconstructions. The FSC can be derived
from the SNR from the relationship between SNR and the cross
correlation (CC).212

SNR ¼ CC
1� CC

ð30Þ
Another method, first proposed for 2D averages and subse-

quently extended to 3D structures, is the spectral signal-to-noise
ratio (SSNR).213�215 In this case, the signal is estimated to be the
reprojections of the map, and the noise is estimated by taking the
difference between input images and the corresponding repro-
jections. This approach does not require the data set to be
divided into halves. Like the FSC, the SSNR requires the aligned
input images. It should be noted that a good resolution value
does not guarantee that the map is correct.

For resolution assessment of tomograms, Cardone et al. pro-
posed twomethods.216 The simpler method is directly equivalent
to the single-particle FSC, using tomograms calculated from even

and odd projections. A more accurate method that is computa-
tionally more expensive is based on averaging a series of Fourier
ring correlations between a given projection and the correspond-
ing reprojection of the tomogram calculated from all of the other
projections.

A further method has been proposed, R-measure.217 It does
not require the input data, but uses the final map itself, along with
the surrounding region of the reconstruction outside the particle,
for the resolution estimation. This method examines the correla-
tions between adjacent pixels in the FT of the reconstruction. For
a map containing pure noise, adjacent transform pixels are
uncorrelated. Background masking introduces such correlations,
which can be predicted, and the structure itself introduces further
correlations. From these correlations and from an estimate of the
noisemeasured on the region surrounding theparticle, theFSCcurve
can be predicted without access to the input data. This is clearly an
advantage, but requires the map to be provided without tight masking
of the structure.

Although these various criteria are available, most work
currently uses the 0.5 FSC criterion. What matters is not a
number, small or large, giving the resolution. The important
thing is what the map shows. If α-helices are resolved, the
resolution must be better than∼9 Å. β-Strands require it to be
better than 4.5 Å. Moreover, there are many examples in the
literature of much lower resolution maps that give important
biological insights.

Figure 30. Effects of full CTF correction and amplitude scaling on the appearance and resolution of an EM map of TMV. (a) Surface view and two
orthogonal central sections of an EMmap of TMV, with the fitted atomic structure shown on the sections (ref 23). (b) Enlargement of the boxed region
in (a), of a map obtained only with phase correction but not amplitude correction or scaling. (c) The same map region after full amplitude correction.
(d) The map region after full amplitude correction and B-factor scaling. (e) Rotationally averaged power spectra of the maps with phase correction (blue),
amplitude and phase correction (red), of a map calculated from the atomic structure fit (green), and of the fully corrected and B-factor scaled map (purple).
(f) FSC curves for the phase and amplitude corrected maps, colored as in (e). Reproduced with permission from ref 83. Copyright 2010 Elsevier Inc.
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8.3. Temperature Factor and Amplitude Scaling (Sharpening)
Advances in single-particle analysis mean that cryo EM

structures increasingly reach subnanometer resolutions, re-
vealing not only domain organization of molecular complexes
but also their secondary structural elements. It is therefore
important that cryo EM maps show the features necessary for
interpretation of these structural elements. Methods of align-
ment, averaging, and reconstruction usually result in over-
weighting of the low-resolution information. Consequently,
the fine details in the map are obscured. The loss of details can
be described by the temperature factor, or B-factor, which
represents the loss of signal with resolution as the smearing out
of atoms by thermal vibrations. The falloff of signal with
reciprocal spacing can be described by a plot of ln F against
1/r2, where F is the spherically averaged scattering amplitude
and r is the real space coordinate.208 The curve is linear at low
spatial frequencies, and its slope is proportional to the radius of
gyration of the scattering object (the Guinier region in small
angle scattering). It is a standard procedure to make the high-
frequency details more visible by scaling the experimental
maps either by applying a filter to reduce the contribution of
low frequency components or by rescaling the amplitude decay
according to the amplitude spectrum of a reference atomic
structure, effectively sharpening the map. This correction has
been done by using X-ray solution scattering curves to scale
the Fourier amplitudes computed from the EM recon-
struction.218,219 Amplitude scaling can therefore uncover fine
details in the structure. This change in scaling of the FT
amplitudes does not affect the measured resolution of the
structure, but its effects can be observed by examining the
rotationally averaged power spectrum of the map. Figure 30
shows an example comparing an EM map of TMV before and
after amplitude scaling and sharpening.

9. HETEROGENEITY IN 2D AND 3D

9.1. Sources of Heterogeneity
The resolution of macromolecular structure determination by

cryo EM is more often limited by conformational variation of the
structure than by problems withmicroscopy or image processing.
Images of a biological complex in solution will reflect the different
states of the complex captured during vitrification.220 Sample hetero-
geneity can arise from several sources: (i) partial occupancy of a
ligand in a molecular complex,221 (ii) structural dynamics that is
reflected in a few distinct reaction states or by a gradual transforma-
tion through intermediate states,222�225 and (iii) multiple oligo-
meric states of different symmetry and/or size.30,226 Ideally, distinct
conformations should be trapped biochemically before EM ima-
ging (e.g., ref 223), but in many cases this is not possible.

9.2.Methods for Computational Sorting ofMixed Structures
Three main approaches have been developed for computa-

tional separation of mixed structures220 (Figure 31). In the first
category, recognition of heterogeneity and initial sorting are
done in 2D only, prior to any 3D reconstruction. This “a priori”
group ofmethods is based primarily onMSA of features in the 2D
images to detect structural variations and discriminate them from
orientation differences. The images are sorted according to their
major variations, which are reflected in the low order eigenimages.
To separate images with variable occupancy of a substrate, two
stages ofMSA and classification can be used. In the first step, images
are separated according to features showing global variance due to
orientation differences, while the second classification is based on
localized differences induced by substrate binding. These steps do
not require angular orientation determination, so the technique is
independent of any initial 3D model. The technique was shown to
discriminate overall size variations as small as 5%.226,227 This
approach has been used to separate ribosome�EF-G complexes
and chaperonin�substrate complexes228,229 (Figure 32).

Figure 31. Three main approaches currently used to identify and sort molecular heterogeneity. The first approach (left panel) is based on statistical
analysis of 2D images (a priori analysis) to detect the heterogeneity of the sample in its images. The initial sorting is done prior to any 3D reconstruction.
The second approach (middle panel) requires an initial 3D map to separate the images into subsets according to their orientation. Analysis of structural
heterogeneity is done in 2D for each orientation subset. The third method (a posteriori analysis) is based on examination of variations in multiple 3D
maps (right panel). Reproduced with permission from ref 220. Copyright 2010 Elsevier Inc.
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In the second category of sorting methods, an initial 3Dmap is
required to separate the images into subsets containing images of

a molecular complex in similar orientations. Analysis of hetero-
geneity is then done in 2D for each image subset. This minimizes

Figure 32. Statistical analysis to detect variable ligand occupancy. A model data set with variable ligand occupancy, simplified to show only one
orientation (a), and the corresponding eigenimages (b). The first eigenimage is the sum of all images. The area corresponding to the ligand has density
proportional to the occupancy (50%) of the ligand in the complex. The second eigenimage shows a very dark spot located in the area of the ligand. This
feature reflects the major variation present in the data set. The remaining eigenimages reflect variations related to noise in the images. (c) Real
eigenimages fromadata set ofGroELwith variable binding of non-nativemalate dehydrogenase. Eigenimages 2 and 3 showvariationsmainly related to different
orientations around the rotation axis. Eigenimage 4 indicates small variations in tilt around a horizontal axis. Eigenimages 5�8mainly reveal variations related to
occupancy and location of the ligand in the complex (arrows). Reproduced with permission from ref 229. Copyright 2007 Elsevier Inc.

Figure 33. High-resolution single-particle EM of Aquarheovirus. (a) Raw images of viruses in vitreous ice. (b) 3D reconstruction colored according to
radius. (c) Structure of subunit VP5 with the backbone model and enlargement to show side-chain detail. Reproduced with permission from ref 15.
Copyright 2010 Elsevier Inc.
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orientation variation within classes, and as a result facilitates
recognition of conformational variations. The approach has been
applied to the reconstruction of heterogeneous ribosome
complexes224,230 and to icosahedral viruses with symmetry mis-
matches or partial occupancy of some components.231

The third category is based on a posteriori analysis of 3D
reconstructions by considering a population (as many as possi-
ble) of 3D reconstructions to determine the variance in 3D.
Many 3D maps are reconstructed for the variance analysis; the
most representative ones are then used as initial models for
refinement. In the so-called “bootstrap” technique,232,233 3D
maps are calculated from randomly selected subsets of images
whose spatial orientations were determined by projection matching
to an initial 3D map. The evaluation of variance in the resulting
3D maps and localization of regions with high variance allows
assessment of the heterogeneity, and estimation of covariance
in the population enables classification of 3D maps. Once the
region of major variation is localized in the 3D maps and in the
corresponding 2D projections, images are sorted into subgroups
according to average pixel density in the high variance region.232

Another idea is the maximum likelihood-based classification of
3D maps that identifies conformational variability within the
maps and then separates the different molecular states.143

10. MAP INTERPRETATION

10.1. Analysis of Map Features
Once the map of a new structure is obtained, it should be

possible to estimate the molecular mass and oligomeric state, in

Figure 34. Flexible fitting of the crystal structure of the N-terminal part
of the human apopotosome (domains NBD, HD1, WHD, and HD2)
into the corresponding segmented cryoEM map at 9.5 Å resolution (ref
239). (a) Initial fit before adjustment of the structure. (b) Result of
flexible fitting. Figure courtesy of Shujun Yuan.

Figure 35. From a section of skin tissue to molecular shape of cadherin. (a) Segmented, rendered image showing the different cellular components in
the reconstructed tissue section. (b) Tomogram slice. D, desmosome; IF, intermediate filaments; Nu, nucleus; ER, endoplasmic reticulum; NE, nuclear
envelope; Mi, mitochondrion. (c) Desmosome extracted from the area in the red dashed box in (b), with an inset of the averaged image. (d) Sub
tomogram average with fitted cadherins. Reproduced with permission from ref 242. Copyright 2007 Macmillan Press.
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conjunction with other biochemical and biophysical data on the
sample. The map should be examined at a contour level that
encloses the approximate molecular mass. Mass measurements
by scanning transmission EM can be very useful for interpreta-
tion, although access to specialized scanning transmission EM
facilities is limited. The map, normally contoured at 1 σ,
should show continuous density well above background noise
(obviously checked before masking) because disconnected
pieces of density would not make sense for a single complex.
Density sections of the map should be viewed in gray scale
representation, to check for inconsistencies such as regions of
anomalously high density, which would not be noticed in an
isosurface representation.

With a map at 4 Å resolution or better, it may be possible
to build an atomic model with the methods used in X-ray
crystallography15 (Figure 33). In the case of EM, the density is
fully determined (assuming sufficient angular sampling) from
the recorded images, which contain both amplitude and phase
information. Therefore, an important difference between
model building in crystallography and in EM is that the
atomic model is not required to refine the EM map. For
tomograms of cells or subcellular structures, segmentation is
used to identify substructures such as membranes and cytos-
keletal elements.

10.2. Atomic Structure Fitting
Docking of known or related atomic structures of components

into the EM map of an assembly is the main tool for interpreta-
tion.234�236 Most single-particle maps are in the 7�30 Å resolution
range, so that they cannot be independently interpreted in terms of
molecular structure. In this resolution range, it is not possible to build
atomic structures, nor is it always possible to unambiguously identify
the positions of known domains. In the low resolution range (20�
30 Å), large domains may be recognizable by their shapes. In the
6�9 Å resolution range, α-helical secondary structures are resolved.
The individual β-strands are seen with a resolution beyond 4.5 Å.
Side-chain detail is only present in exceptionally high-resolution
structures, such as the aquareovirus particle shown in Figure 33, but
docking into lower resolution density maps often provides good
predictive value for probing mechanisms and designing mutants.

Over the whole resolution range, map interpretation is almost
always facilitated by the availability of known or related atomic
structures for components that can be used for fitting (Figure 34).
The basic principle of fitting is density correlation. A target density
map is calculated from the atomic structure, at the same resolution
as the EMmap, and a cross correlation search in 3D is used to align
the two densities. The search can be done in either real or reciprocal
space. For a small object being docked into a largermap, themethod
of local correlation was developed (section 4.3128), giving a more
sensitive measure of fit. Even at modest resolution, if the subregion
has an asymmetric shape, it may be possible to position the structure
with an accuracy of a few angstroms. Fitting a set of small, separate
subunits into a large map at low resolution is very difficult, unless
informationon subunit interfaces is available. Labeling experiments are
very helpful if an accessible position can be identified for insertion of a
binding site, for example, a unique cysteine for binding a derivatized
gold particle, or fusion of a protein domain such as GFP. However,
gold labels can bind nonspecifically or disassemble fragile complexes.

Often there are hinge movements whenmolecules assemble into
larger complexes, so that the original search object does not match
the density as a rigid body. For this case, flexible fitting approaches
are used (Figure 34).235,237�241 The molecules are allowed to bend

in designated hinge regions, or multiple conformations are gener-
ated by normal-mode analysis and then used for fitting. For these
methods, there is a danger of overinterpretation with unjustified
details, especially with low resolutionmaps. If major refolding of the
atomic structure is suggested, it is important to use biochemical or
biophysical experiments to provide supporting data, for example,
interatomic distancemeasures by spectroscopy or cross-linking. The
more constraints are available, the more reliable is the final result.

10.3. Biological Implications
Ultimately, the most important questions are: Does the structure

make sense? What new biological insight does it provide? With
sufficient resolution, the structure can be used to predict effects of
mutations or sites of potential cross-links, and these predictions can
be tested in molecular biological experiments. 3D EM analysis
increasingly forms a part of molecular and cell biology studies. The
future prospect is to combine 3D information over the whole range,
to understand the operationofmacromolecularmachines in cells and
tissues. An example of a cryo-tomogram of a section of skin tissue,
from which the intercellular desmosome junctions were extracted,
aligned, and averaged to reveal the 3D density corresponding to
cadherin molecules that could be fitted with an atomic model is
shown in Figure 35.242

With the concurrent progress in macromolecular crystallo-
graphy, it is often possible to derive a pseudoatomic model of
large assemblies by docking atomic structures of components
into EM maps. Advances resulting from these hardware and
software improvements are helping to reveal the mechanisms of
operation of macromolecular machines by providing snapshots
of their different functional states. The 3D EM field, following
macromolecular crystallography, is maturing, with an international
database of EM density maps (EMDatabank.org) linked to the
PDB, currently containing over 1000 entries and growing steadily.
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